Advertisement

Multi-input Functional Encryption in the Private-Key Setting: Stronger Security from Weaker Assumptions

  • Zvika Brakerski
  • Ilan KomargodskiEmail author
  • Gil Segev
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9666)

Abstract

We construct a general-purpose multi-input functional encryption scheme in the private-key setting. Namely, we construct a scheme where a functional key corresponding to a function f enables a user holding encryptions of \(x_1, \ldots , x_t\) to compute \(f(x_1, \ldots , x_t)\) but nothing else. This is achieved starting from any general-purpose private-key single-input scheme (without any additional assumptions), and is proven to be adaptively secure for any constant number of inputs t. Moreover, it can be extended to a super-constant number of inputs assuming that the underlying single-input scheme is sub-exponentially secure.

Instantiating our construction with existing single-input schemes, we obtain multi-input schemes that are based on a variety of assumptions (such as indistinguishability obfuscation, multilinear maps, learning with errors, and even one-way functions), offering various trade-offs between security and efficiency.

Previous and concurrent constructions of multi-input functional encryption schemes either rely on stronger assumptions and provided weaker security guarantees (Goldwasser et al. [EUROCRYPT ’14], and Ananth and Jain [CRYPTO ’15]), or relied on multilinear maps and could be proven secure only in an idealized generic model (Boneh et al. [EUROCRYPT ’15]). In comparison, we present a general transformation that simultaneously relies on weaker assumptions and guarantees stronger security.

Notes

Acknowledgments

We thank Eylon Yogev for various insightful discussions and the EUROCRYPT ’16 reviewers for their useful comments.

Supplementary material

References

  1. 1.
    Agrawal, S., Agrawal, S., Badrinarayanan, S., Kumarasubramanian, A., Prabhakaran, M., Sahai, A.: Function private functional encryption and property preserving encryption: New definitions and positive results. Cryptology ePrint Archive, Report 2013/744 (2013)Google Scholar
  2. 2.
    Agrawal, S., Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption: new perspectives and lower bounds. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 500–518. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  3. 3.
    Ananth, P., Boneh, D., Garg, S., Sahai, A., Zhandry, M.: Differing-inputs obfuscation and applications. Cryptology ePrint Archive, Report 2013/689 (2013)Google Scholar
  4. 4.
    Ananth, P., Brakerski, Z., Segev, G., Vaikuntanathan, V.: From selective to adaptive security in functional encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 657–677. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  5. 5.
    Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 308–326. Springer, Heidelberg (2015)Google Scholar
  6. 6.
    Ananth, P., Jain, A., Sahai, A.: Achieving compactness generically: Indistinguishability obfuscation from non-compact functional encryption. Cryptology ePrint Archive, Report 2015/730 (2015)Google Scholar
  7. 7.
    Asharov, G., Segev, G.: Limits on the power of indistinguishability obfuscation and functional encryption. In: Proceedings of the 56th Annual IEEE Symposium on Foundations of Computer Science, pp. 191–209 (2015)Google Scholar
  8. 8.
    Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P., Yang, K.: On the (im)possibility of obfuscating programs. J. ACM 59(2), 6 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bellare, M., O’Neill, A.: Semantically-secure functional encryption: possibility results, impossibility results and the quest for a general definition. In: Abdalla, M., Nita-Rotaru, C., Dahab, R. (eds.) CANS 2013. LNCS, vol. 8257, pp. 218–234. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  10. 10.
    Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional encryption. In: Proceedings of the 56th Annual IEEE Symposium on Foundations of Computer Science, pp. 171–190 (2015)Google Scholar
  11. 11.
    Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Boneh, D., Lewi, K., Raykova, M., Sahai, A., Zhandry, M., Zimmerman, J.: Semantically secure order-revealing encryption: multi-input functional encryption without obfuscation. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 563–594. Springer, Heidelberg (2015)Google Scholar
  13. 13.
    Boneh, D., Raghunathan, A., Segev, G.: Function-private identity-based encryption: hiding the function in functional encryption. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 461–478. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  14. 14.
    Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Boneh, D., Waters, B.: Constrained pseudorandom functions and their applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 280–300. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
    Boyle, E., Chung, K.-M., Pass, R.: On extractability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 52–73. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  17. 17.
    Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom functions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  18. 18.
    Brakerski, Z., Komargodski, I., Segev, G.: Multi-input functional encryption in the private-key setting: Stronger security from weaker assumptions. Cryptology ePrint Archive, Report 2015/158 (2015)Google Scholar
  19. 19.
    Brakerski, Z., Segev, G.: Function-private functional encryption in the private-key setting. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 306–324. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  20. 20.
    Cocks, C.: An identity based encryption scheme based on quadratic residues. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  21. 21.
    Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: Proceedings of the 54th Annual IEEE Symposium on Foundations of Computer Science, pp. 40–49 (2013)Google Scholar
  22. 22.
    Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Functional encryption without obfuscation. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016-A. LNCS, vol. 9563, pp. 480–511. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49099-0_18 CrossRefGoogle Scholar
  23. 23.
    Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J. ACM 33(4), 792–807 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Goldwasser, S., et al.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  25. 25.
    Goldwasser, S., Kalai, Y., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: Reusable garbled circuits and succinct functional encryption. In: Proceedings of the 45th Annual ACM Symposium on Theory of Computing, pp. 555–564 (2013)Google Scholar
  26. 26.
    Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded collusions via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  27. 27.
    Iovino, V., Zebrowski, K.: Mergeable functional encryption. Cryptology ePrint Archive, Report 2015/103 (2015)Google Scholar
  28. 28.
    Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseudorandom functions and applications. In: Proceedings of the 20th Annual ACM Conference on Computer and Communications Security, pp. 669–684 (2013)Google Scholar
  29. 29.
    Komargodski, I., Moran, T., Naor, M., Pass, R., Rosen, A., Yogev, E.: One-way functions and (im)perfect obfuscation. In: Proceedings of the 55th Annual IEEE Symposium on Foundations of Computer Science, pp. 374–383 (2014)Google Scholar
  30. 30.
    Komargodski, I., Segev, G., Yogev, E.: Functional encryption for randomized functionalities in the private-key setting from minimal assumptions. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 352–377. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  31. 31.
    O’Neill, A.: Definitional issues in functional encryption. Cryptology ePrint Archive, Report 2010/556 (2010)Google Scholar
  32. 32.
    Sahai, A., Waters, B.: Slides on functional encryption (2008). http://www.cs.utexas.edu/~bwaters/presentations/files/functional.ppt
  33. 33.
    Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryption, and more. In: Proceedings of the 46th Annual ACM Symposium on Theory of Computing, pp. 475–484 (2014)Google Scholar
  34. 34.
    Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  35. 35.
    Shen, E., Shi, E., Waters, B.: Predicate privacy in encryption systems. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 457–473. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  36. 36.
    Waters, B.: A punctured programming approach to adaptively secure functional encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 678–697. Springer, Heidelberg (2015)CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2016

Authors and Affiliations

  1. 1.Weizmann Institute of ScienceRehovotIsrael
  2. 2.Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations