Advertisement

Weaning pp 9-20 | Cite as

Ursachen und Pathophysiologie des Weaningversagens

  • Hans-Joachim Kabitz
  • Rolf Dembinski
Chapter

Zusammenfassung

Das Verständnis der Ursachen und der Pathophysiologie des Weaningversagens sind für den Intensivmediziner essentiell. Die akute respiratorische Insuffizienz (ARI) stellt den Beginn einer Kausalkette dar, an deren Ende häufig das Weaningversagen steht. Grundsätzlich muss die hypoxische von der hyperkapnischen respiratorischen Insuffizienz sowohl in Bezug auf Ätiologie (z. B. ARDS, COPD) als auch Therapie (z. B. Beatmungsmodalitäten) sowie Outcome und langfristiger Behandlungsoptionen (z. B. nicht-invasive Heimbeatmung) unterschieden werden.

Literatur

  1. [1]
    Kabitz H-J, Windisch W, Schönhofer B (2013) Understanding ventilator-induced diaphragmatic dysfunction (VIDD): progress and advances. Pneumol Stuttg Ger 67:435–441CrossRefGoogle Scholar
  2. [2]
    Schild K, Neusch C, Schönhofer B (2008) Ventilator-induced diaphragmatic dysfunction (VIDD). Pneumol Stuttg Ger 62:33–39CrossRefGoogle Scholar
  3. [3]
    Levine S, Nguyen T, Taylor N, Friscia ME, Budak MT, Rothenberg P, Zhu J, Sachdeva R, Sonnad S, Kaiser LR, Rubinstein NA, Powers SK, Shrager JB (2008) Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med 358:1327–1335CrossRefPubMedGoogle Scholar
  4. [4]
    Welvaart WN, Paul MA, Stienen GJM, van Hees HWH, Loer SA, Bouwman R, Niessen H, de Man FS, Witt CC, Granzier H, Vonk-Noordegraaf A, Ottenheijm CAC (2011) Selective diaphragm muscle weakness after contractile inactivity during thoracic surgery. Ann Surg 254:1044–1049CrossRefPubMedGoogle Scholar
  5. [5]
    Jaber S, Petrof BJ, Jung B, Chanques G, Berthet J-P, Rabuel C, Bouyabrine H, Courouble P, Koechlin-Ramonatxo C, Sebbane M, Similowski T, Scheuermann V, Mebazaa A, Capdevila X, Mornet D, Mercier J, Lacampagne A, Philips A, Matecki S (2011) Rapidly progressive diaphragmatic weakness and injury during mechanical ventilation in humans. Am J Respir Crit Care Med 183:364–371CrossRefPubMedGoogle Scholar
  6. [6]
    Du J, Wang X, Miereles C, Bailey JL, Debigare R, Zheng B, Price SR, Mitch WE (2004) Activation of caspase-3 is an initial step triggering accelerated muscle proteolysis in catabolic conditions. J Clin Invest 113:115–123CrossRefPubMedPubMedCentralGoogle Scholar
  7. [7]
    Powers SK, Kavazis AN, DeRuisseau KC (2005) Mechanisms of disuse muscle atrophy: role of oxidative stress. Am J Physiol Regul Integr Comp Physiol 288:R337–R344CrossRefPubMedGoogle Scholar
  8. [8]
    Kim WY, Suh HJ, Hong S-B, Koh Y, Lim C-M (2011) Diaphragm dysfunction assessed by ultrasonography: influence on weaning from mechanical ventilation. Crit Care Med 39:2627–2630CrossRefPubMedGoogle Scholar
  9. [9]
    Grosu HB, Lee YI, Lee J, Eden E, Eikermann M, Rose KM (2012) Diaphragm muscle thinning in patients who are mechanically ventilated. Chest 142:1455–1460CrossRefPubMedGoogle Scholar
  10. [10]
    Serpa Neto A, Cardoso SO, Manetta JA, Pereira VGM, Espósito DC, Pasqualucci M de OP, Damasceno MCT, Schultz MJ (2012) Association between use of lung-protective ventilation with lower tidal volumes and clinical outcomes among patients without acute respiratory distress syndrome: a meta-analysis. JAMA 308:1651–1659Google Scholar
  11. [11]
    Jung B, Sebbane M, Goff CL, Rossel N, Chanques G, Futier E, Constantin J-M, Matecki S, Jaber S (2013) Moderate and prolonged hypercapnic acidosis may protect against ventilator-induced diaphragmatic dysfunction in healthy piglet: an in vivo study. Crit Care Lond Engl 17:R15CrossRefGoogle Scholar
  12. [12]
    Agten A, Maes K, Smuder A, Powers SK, Decramer M, Gayan-Ramirez G (2011) N-Acetylcysteine protects the rat diaphragm from the decreased contractility associated with controlled mechanical ventilation. Crit Care Med 39:777–782CrossRefPubMedGoogle Scholar
  13. [13]
    Laghi F (2011) Ventilator-induced diaphragmatic dysfunction: is there a dim light at the end of the tunnel? Crit Care Med 39:903–905CrossRefPubMedGoogle Scholar
  14. [14]
    Doorduin J, Sinderby CA, Beck J, Stegeman DF, van Hees HWH, van der Hoeven JG, Heunks LMA (2012) The calcium sensitizer levosimendan improves human diaphragm function. Am J Respir Crit Care Med 185:90–95CrossRefPubMedGoogle Scholar
  15. [15]
    Adler D, Gottfried SB, Bautin N, Mirkovic T, Schmidt M, Raux M, Pavlovic D, Similowski T, Demoule A (2011) Repetitive magnetic stimulation of the phrenic nerves for diaphragm conditioning: a normative study of feasibility and optimal settings. Appl Physiol Nutr Metab Physiol Appliquée Nutr Métabolisme 36:1001–1008CrossRefGoogle Scholar
  16. [16]
    Martin AD, Smith BK, Davenport PD, Harman E, Gonzalez-Rothi RJ, Baz M, Layon AJ, Banner MJ, Caruso LJ, Deoghare H, Huang T-T, Gabrielli A (2011) Inspiratory muscle strength training improves weaning outcome in failure to wean patients: a randomized trial. Crit Care Lond Engl 15:R84CrossRefGoogle Scholar
  17. [17]
    Moodie L, Reeve J, Elkins M (2011) Inspiratory muscle training increases inspiratory muscle strength in patients weaning from mechanical ventilation: a systematic review. J Physiother 57:213–221CrossRefPubMedGoogle Scholar
  18. [18]
    Smuder AJ, Min K, Hudson MB, Kavazis AN, Kwon O-S, Nelson WB, Powers SK (2012) Endurance exercise attenuates ventilator-induced diaphragm dysfunction. J Appl Physiol (1985) 112:501–510Google Scholar
  19. [19]
    Hermans G, Agten A, Testelmans D, Decramer M, Gayan-Ramirez G (2010) Increased duration of mechanical ventilation is associated with decreased diaphragmatic force: a prospective observational study. Crit Care Lond Engl 14:R127CrossRefGoogle Scholar
  20. [20]
    Tobin MJ, Laghi F, Jubran A (2010) Narrative review: ventilator-induced respiratory muscle weakness. Ann Intern Med 153:240–245CrossRefPubMedPubMedCentralGoogle Scholar
  21. [21]
    WD, Huang J, Bryson S, Walker DC, Belcastro AN (1994) Diaphragm injury and myofibrillar structure induced by resistive loading. J Appl Physiol 76:176–184PubMedGoogle Scholar
  22. [22]
    Laghi F, D'Alfonso N, Tobin MJ (1995) Pattern of recovery from diaphragmatic fatigue over 24 hours. J Appl Physiol 79:539–546CrossRefPubMedGoogle Scholar
  23. [23]
    Pinsky MR (2005) Cardiovascular issues in respiratory care. Chest 128:592S–597SGoogle Scholar
  24. [24]
    Dres M, Teboul JL, Monnet X (2014) Weaning the cardiac patient from mechanical ventilation. Curr.Opin.Crit Care 20:493–498Google Scholar
  25. [25]
    Schonhofer B, Wenzel M, Geibel M, Kohler D (1998) Blood transfusion and lung function in chronically anemic patients with severe chronic obstructive pulmonary disease. Crit Care Med 26:1824–1828CrossRefPubMedGoogle Scholar
  26. [26]
    Silver MR (2005) Anemia in the long-term ventilator-dependent patient with respiratory failure. Chest 128:568S–575SGoogle Scholar
  27. [27]
    Schonhofer B, Geiseler J, Dellweg D, Moerer O, Barchfeld T, Fuchs H, Karg O, Rosseau S, Sitter H, Weber-Carstens S, Westhoff M, Windisch W (2014) Prolonged weaning: S2k-guideline published by the German Respiratory Society. Pneumologie 68:19–75Google Scholar
  28. [28]
    Boles JM, Bion J, Connors A, Herridge M, Marsh B, Melot C, Pearl R, Silverman H, Stanchina M, Vieillard-Baron A, Welte T (2007) Weaning from mechanical ventilation. Eur Respir J 29:1033–1056Google Scholar
  29. [29]
    Hill GL (1994) Impact of nutritional support on the clinical outcome of the surgical patient. Clin Nutr 13:331–340CrossRefPubMedGoogle Scholar
  30. [30]
    Cahill NE, Dhaliwal R, Day AG, Jiang X, Heyland DK (2010) Nutrition therapy in the critical care setting: what is "best achievable" practice? An international multicenter observational study. Crit Care Med 38:395–401Google Scholar
  31. [31]
    Plank LD, Hill GL (2003) Energy balance in critical illness. Proc Nutr Soc 62:545–552Google Scholar
  32. [32]
    Casaer MP (2015) Muscle weakness and nutrition therapy in ICU. Curr Opin Clin Nutr Metab Care 18:162–168Google Scholar
  33. [33]
    Herve P, Simonneau G, Girard P, Cerrina J, Mathieu M, Duroux P (1985) Hypercapnic acidosis induced by nutrition in mechanically ventilated patients: glucose versus fat. Crit Care Med 13:537–540CrossRefPubMedGoogle Scholar
  34. [34]
    al-Saady NM, Blackmore CM, Bennett ED (1989) High fat, low carbohydrate, enteral feeding lowers PaCO2 and reduces the period of ventilation in artificially ventilated patients. Intensive Care Med 15:290–295CrossRefPubMedGoogle Scholar
  35. [35]
    van den Berg B, Bogaard JM, Hop WC (1994) High fat, low carbohydrate, enteral feeding in patients weaning from the ventilator. Intensive Care Med 20:470–475CrossRefPubMedGoogle Scholar
  36. [36]
    Maes K, Agten A, Smuder A, Powers SK, Decramer M, Gayan-Ramirez G (2010) Corticosteroid effects on ventilator-induced diaphragm dysfunction in anesthetized rats depend on the dose administered. Respir Res 11:178CrossRefPubMedPubMedCentralGoogle Scholar
  37. [37]
    Maes K, Testelmans D, Thomas D, Decramer M, Gayan-Ramirez G (2011) High dose methylprednisolone counteracts the negative effects of rocuronium on diaphragm function. Intensive Care Med 37:1865–1872CrossRefPubMedGoogle Scholar
  38. [38]
    Testelmans D, Maes K, Wouters P, Powers SK, Decramer M, Gayan-Ramirez G (2007) Infusions of rocuronium and cisatracurium exert different effects on rat diaphragm function. Intensive Care Med 33:872–879CrossRefPubMedGoogle Scholar
  39. [39]
    Bruells CS, Maes K, Rossaint R, Thomas D, Cielen N, Bergs I, Bleilevens C, Weis J, Gayan-Ramirez G (2014) Sedation using propofol induces similar diaphragm dysfunction and atrophy during spontaneous breathing and mechanical ventilation in rats. Anesthesiology 120:665–672Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  • Hans-Joachim Kabitz
    • 1
  • Rolf Dembinski
    • 2
  1. 1.Klinikum KonstanzKonstanzDeutschland
  2. 2.Klinikum Bremen-MitteKlinik für Intensiv- und NotfallmedizinBremenDeutschland

Personalised recommendations