Advertisement

Vienna Verification Tool: IC3 for Parallel Software

(Competition Contribution)
  • Henning Günther
  • Alfons Laarman
  • Georg Weissenbacher
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9636)

Abstract

Recently proposed extensions of the IC3 model checking algorithm offer a powerful new way to symbolically verify software. The Vienna Verification Tool (VVT) implements these techniques with the aim to tackle the problem of parallel software verification. Its SMT-based abstraction mechanisms allow VVT to deal with infinite state systems. In addition, VVT utilizes a coarse-grained large-block encoding and a variant of Lipton’s reduction to reduce the number of interleavings. This paper introduces VVT, its underlying architecture and use.

Keywords

Model Check Transition Relation Software Verification Tool Chain Model Check Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB standard: version 2.0. In: Gupta, A., Kroening, D. (eds,) SMT Workshopp (2010)Google Scholar
  2. 2.
    Birgmeier, J., Bradley, A.R., Weissenbacher, G.: Counterexample to induction-guided abstraction-refinement (CTIGAR). In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 829–846. Springer, Heidelberg (2014)Google Scholar
  3. 3.
    Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Lattner, C., Adve, V.: The LLVM Instruction Set and Compilation Strategy. Technical report UIUCDCS-R-2002-2292, University of Illinois (August 2002)Google Scholar
  5. 5.
    Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) Computer Aided Verification. LNCS, pp. 154–169. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. 6.
    de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT Solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS, vol. 7795, pp. 93–107. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Beyer, D., et al. Software model checking via large-block encoding. In: FMCAD, pp. 25–32. IEEE (2009)Google Scholar
  9. 9.
    Flanagan, C., Qadeer, S.: Transactions for software model checking. Electron. Notes Theor. Comput. Sci. 89(3), 518–539 (2003)CrossRefzbMATHGoogle Scholar
  10. 10.
    Günther, H.: VVT website. http://vvt.forsyte.at, last visited: January 2016
  11. 11.
    Günther, H., Weissenbacher, G.: Incremental bounded software model checking. In: SPIN, pp. 40–47. ACM (2014)Google Scholar
  12. 12.
    Lipton, R.J.: Reduction: a method of proving properties of parallel programs. Commun. ACM 18(12), 717–721 (1975)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Henning Günther
    • 1
  • Alfons Laarman
    • 1
  • Georg Weissenbacher
    • 1
  1. 1.TU WienViennaAustria

Personalised recommendations