Advertisement

Characteristic Formulae for Session Types

  • Julien Lange
  • Nobuko Yoshida
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9636)

Abstract

Subtyping is a crucial ingredient of session type theory and its applications, notably to programming language implementations. In this paper, we study effective ways to check whether a session type is a subtype of another by applying a characteristic formulae approach to the problem. Our core contribution is an algorithm to generate a modal \(\mu \)-calculus formula that characterises all the supertypes (or subtypes) of a given type. Subtyping checks can then be off-loaded to model checkers, thus incidentally yielding an efficient algorithm to check safety of session types, soundly and completely. We have implemented our theory and compared its cost with other classical subtyping algorithms.

Notes

Acknowledgements

We would like to thank Luca Aceto, Laura Bocchi, and Alceste Scalas for their invaluable comments on earlier versions of this work. This work is partially supported by EPSRC projects EP/K034413/1, EP/K011715/1, and EP/ L00058X/1; and by EU FP7 project under grant agreement 612985 (UPSCALE).

References

  1. 1.
    Aceto, L., Ingólfsdóttir, A.: A characterization of finitary bisimulation. Inf. Process. Lett. 64(3), 127–134 (1997)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Aceto, L., Ingólfsdóttir, A.: Characteristic formulae: from automata to logic. Bull. EATCS 91, 58–75 (2007)MathSciNetMATHGoogle Scholar
  3. 3.
    Aceto, L., Ingólfsdóttir, A., Levy, P.B., Sack, J.: Characteristic formulae for fixed-point semantics: a general framework. Math. Struct. Comput. Sci. 22(2), 125–173 (2012)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Aceto, L., Ingólfsdóttir, A., Pedersen, M.L., Poulsen, J.: Characteristic formulae for timed automata. ITA 34(6), 565–584 (2000)MathSciNetMATHGoogle Scholar
  5. 5.
    Amadio, R.M., Cardelli, L.: Subtyping recursive types. ACM Trans. Program. Lang. Syst. 15(4), 575–631 (1993)CrossRefGoogle Scholar
  6. 6.
    Bocchi, L., Honda, K., Tuosto, E., Yoshida, N.: A theory of design-by-contract for distributed multiparty interactions. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 162–176. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Bocchi, L., Lange, J., Yoshida, N.: Meeting deadlines together. In: CONCUR 2015, pp. 283–296 (2015)Google Scholar
  8. 8.
    Bocchi, L., Yang, W., Yoshida, N.: Timed multiparty session types. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 419–434. Springer, Heidelberg (2014)Google Scholar
  9. 9.
    Chaki, S., Rajamani, S.K., Rehof, J.: Types as models: model checking message-passing programs. In: POPL 2002, pp. 45–57 (2002)Google Scholar
  10. 10.
    Chen, T.-C., Dezani-Ciancaglini, M., Yoshida, N.: On the preciseness of subtyping in session types. In: PPDP 2014, pp. 146–135. ACM Press (2014)Google Scholar
  11. 11.
    Claessen, K., Hughes, J.: Quickcheck: a lightweight tool for random testing of Haskell programs. In: ICFP 2000, pp. 268–279 (2000)Google Scholar
  12. 12.
    Cleaveland, R., Steffen, B.: Computing behavioural relations, logically. In: Leach Albert, J., Monien, B., Rodríguez-Artalejo, M. (eds.) ICALP 1991. LNCS, vol. 510, pp. 127–138. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  13. 13.
    Cognizant.: Zero Deviation Lifecycle. http://www.zdlc.co
  14. 14.
    Cranen, S., Groote, J.F., Keiren, J.J.A., Stappers, F.P.M., de Vink, E.P., Wesselink, W., Willemse, T.A.C.: An overview of the mCRL2 toolset and its recent advances. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS, vol. 7795, pp. 199–213. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  15. 15.
    Demangeon, R., Honda, K.: Full abstraction in a subtyped pi-calculus with linear types. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 280–296. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Deniélou, P.-M., Yoshida, N.: Multiparty compatibility in communicating automata: characterisation and synthesis of global session types. In: Kwiatkowska, M., Peleg, D., Fomin, F.V., Freivalds, R. (eds.) ICALP 2013, Part II. LNCS, vol. 7966, pp. 174–186. Springer, Heidelberg (2013)Google Scholar
  17. 17.
    Diatchki, I.S.: Improving Haskell types with SMT. In: Haskell 2015, pp. 1–10. ACM (2015)Google Scholar
  18. 18.
    Fecher, H., Steffen, M.: Characteristic mu-calculus formulas for underspecified transition systems. Electr. Notes Theor. Comput. Sci. 128(2), 103–116 (2005)CrossRefMATHGoogle Scholar
  19. 19.
    Gapeyev, V., Levin, M.Y., Pierce, B.C.: Recursive subtyping revealed. J. Funct. Program. 12(6), 511–548 (2002)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Gay, S.J., Hole, M.: Types and subtypes for client-server interactions. In: Swierstra, S.D. (ed.) ESOP 1999. LNCS, vol. 1576, pp. 74–90. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  21. 21.
    Gay, S.J., Hole, M.: Subtyping for session types in the pi calculus. Acta Inf. 42(2–3), 191–225 (2005)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Graf, S., Sifakis, J.: A modal characterization of observational congruence on finite terms of CCS. Inf. Control 68(1–3), 125–145 (1986)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Groote, J.F., Mousavi, M.R.: Modeling and Analysis of Communicating Systems. MIT Press, Cambridge (2014)MATHGoogle Scholar
  24. 24.
    Gundry, A.: A typechecker plugin for units of measure: domain-specific constraint solving in GHC Haskell. In: Haskell 2015, pp. 11–22. ACM (2015)Google Scholar
  25. 25.
    Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline for structured communication-based programming. In: Hankin, C. (ed.) ESOP 1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  26. 26.
    Hüttel, H., Lanese, I., Vasconcelos, V.T., Caires, L., Carbone, M., Deniélou, P.-M., Mostrous, D., Padovani, L., Ravara, A., Tuosto, E., et al. Foundations of behavioural types. Report of the EU COST Action IC1201 (BETTY) (2014). www.behavioural-types.eu/publications/WG1-State-of-the-Art.pdf
  27. 27.
    Results on the propositional mu-calculus: D. Kozen. Theor. Comput. Sci. 27, 333–354 (1983)CrossRefGoogle Scholar
  28. 28.
    Kozen, D., Palsberg, J., Schwartzbach, M.I.: Efficient recursive subtyping. Math. Struct. Comput. Sci. 5(1), 113–125 (1995)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
  30. 30.
    Lange, J., Tuosto, E., Yoshida, N.: From communicating machines to graphical choreographies. In: POPL 2015, pp. 221–232 (2015)Google Scholar
  31. 31.
    Lange, J., Yoshida, N.: Extended version of this paper. CoRR, abs/1510.06879 (2015)Google Scholar
  32. 32.
    Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness. In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 348–370. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  33. 33.
    Leino, K.R.M., Yessenov, K.: Stepwise refinement of heap-manipulating code in Chalice. Formal Asp. Comput. 24(4–6), 519–535 (2012)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Müller-Olm, M.: Derivation of characteristic formulae. Electr. Notes Theor. Comput. Sci. 18, 159–170 (1998)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Pierce, B.C.: Types and Programming Languages. MIT Press, Cambridge (2002)MATHGoogle Scholar
  36. 36.
    Pierce, B.C., Sangiorgi, D.: Typing and subtyping for mobile processes. Math. Struct. Comput. Sci. 6(5), 409–453 (1996)MathSciNetMATHGoogle Scholar
  37. 37.
    Sack, J., Zhang, L.: A general framework for probabilistic characterizing formulae. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 396–411. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  38. 38.
    Scribble Project homepage. www.scribble.org
  39. 39.
    Steffen, B.: Characteristic formulae. In: Ronchi Della Rocca, S., Ausiello, G., Dezani-Ciancaglini, M. (eds.) ICALP 1989. LNCS, vol. 372, pp. 723–732. Springer, Heidelberg (1989)CrossRefGoogle Scholar
  40. 40.
    Steffen, B., Ingólfsdóttir, A.: Characteristic formulae for processes with divergence. Inf. Comput. 110(1), 149–163 (1994)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Takeuchi, K., Honda, K., Kubo, M.: An interaction-based language and its typing system. In: Halatsis, C., Philokyprou, G., Maritsas, D., Theodoridis, S. (eds.) PARLE 1994. LNCS, vol. 817. Springer, Heidelberg (1994)Google Scholar
  42. 42.
    van Glabbeek, R.J.: The linear time - branching time spectrum (extended abstract). In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 278–297. Springer, Heidelberg (1990)Google Scholar
  43. 43.
    Yoshida, N., Hu, R., Neykova, R., Ng, N.: The scribble protocol language. In: Abadi, M., Lluch Lafuente, A. (eds.) TGC 2013. LNCS, vol. 8358, pp. 22–41. Springer, Heidelberg (2014)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Imperial College LondonLondonUK

Personalised recommendations