Hybridization Based CEGAR for Hybrid Automata with Affine Dynamics

  • Nima RoohiEmail author
  • Pavithra Prabhakar
  • Mahesh Viswanathan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9636)


We consider the problem of safety verification for hybrid systems, whose continuous dynamics in each mode is affine, \(\dot{X}=AX+b\), and invariants and guards are specified using rectangular constraints. We present a counter-example guided abstraction refinement framework (CEGAR), which abstract these hybrid automata into simpler ones with rectangular inclusion dynamics, \(\dot{x} \in \mathcal {I}\), where x is a variable and \(\mathcal {I}\) is an interval in \(\mathbb {R}\). In contrast to existing CEGAR frameworks which consider discrete abstractions, our method provides highly efficient abstraction construction, though model-checking the abstract system is more expensive. Our CEGAR algorithm has been implemented in a prototype tool called \(\mathtt {HARE}\) (Hybrid Abstraction-Refinement Engine), that makes calls to \(\mathtt {SpaceEx}\) to validate abstract counterexamples. We analyze the performance of our tool against standard benchmark examples, and show that its performance is promising when compared to state-of-the-art safety verification tools, \(\mathtt {SpaceEx}\), \(\mathtt {PHAVer}\), \(\mathtt {SpaceEx~AGAR}\), and \(\mathtt {HSolver}\).



The authors would like to thank Sergiy Bogolomov for help with using the SpaceEx AGAR. We gratefully acknowledge the support of the following grants — Nima Roohi was partially supported by NSF CNS 1329991; Pavithra Prabhakar was partially supported by EU FP7 Marie Curie Career Integration Grant no. 631622 and NSF CAREER 1552668; and Mahesh Viswanathan was partially supported by NSF CCF 1422798 and AFOSR FA9950-15-1-0059.


  1. 1.
    Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.H., Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. TCS 138(1), 3–34 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alur, R., Dang, T., Ivančić, F.: Predicate abstraction for reachability analysis of hybrid systems. ACM Trans. Embed. Comput. Syst. 5(1), 152–199 (2006)CrossRefzbMATHGoogle Scholar
  3. 3.
    Asarin, E., Maler, O., Pnueli, A.: Reachability analysis of dynamical systems having piecewise-constant derivatives. TCS 138(1), 35–65 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bagnara, R., Hill, P.M., Zaffanella, E.: The parma polyhedra library: toward a complete set of numerical abstractions for the analysis and verification of hardware and software systems. Sci. Comput. Program. 72(1–2), 3–21 (2008)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Ball, T., Rajamani, S.: Bebop: a symbolic model checker for boolean programs. In: Havelund, K., Penix, J., Visser, W. (eds.) SPIN 2000. LNCS, vol. 1885, pp. 113–130. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. 6.
    Bogomolov, S., Donze, A., Frehse, G., Grosu, R., Johnson, T.T., Ladan, H., Podelski, A., Wehrle, M.: Guided search for hybrid systems based on coarse-grained space abstractions. Int. J. Softw. Tools Technol. Transfer, October 2014Google Scholar
  7. 7.
    Bogomolov, S., Frehse, G., Greitschus, M., Grosu, R., Pasareanu, C., Podelski, A., Strump, T.: Assume-guarantee abstraction refinement meets hybrid systems. In: Yahav, E. (ed.) HVC 2014. LNCS, vol. 8855, pp. 116–131. Springer, Heidelberg (2014)Google Scholar
  8. 8.
    Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 258–263. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  9. 9.
    Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 154–169. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. 10.
    Clarke, E., Fehnker, A., Han, Z., Krogh, B., Ouaknine, J., Stursberg, O., Theobald, M.: Abstraction and counterexample-guided refinement in model checking of hybrid systems. JFCS 14(4), 583–604 (2003)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Clarke, E., Fehnker, A., Han, Z., Krogh, B.H., Stursberg, O., Theobald, M.: Verification of hybrid systems based on counterexample-guided abstraction refinement. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 192–207. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Corbett, J., Dwyer, M., Hatcliff, J., Laubach, S., Pasareanu, C., Robby, Z.H.: Bandera: extracting finite-state models from java source code. In: ICSE, pp. 439–448 (2000)Google Scholar
  13. 13.
    de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Dierks, H., Kupferschmid, S., Larsen, K.G.: Automatic abstraction refinement for timed automata. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp. 114–129. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Doyen, L., Henzinger, T.A., Raskin, J.-F.: Automatic rectangular refinement of affine hybrid systems. In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp. 144–161. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Fehnker, A., Clarke, E., Jha, S.K., Krogh, B.H.: Refining abstractions of hybrid systems using counterexample fragments. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 242–257. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Fehnker, A., Ivančić, F.: Benchmarks for hybrid systems verification. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 326–341. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  18. 18.
    Frehse, G.: PHAVer: algorithmic verification of hybrid systems past hytech. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 258–273. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R., Girard, A., Dang, T., Maler, O.: SpaceEx: scalable verification of hybrid systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  20. 20.
    Henzinger, T.A., Ho, P.H., Wong-Toi, H.: Hytech: a model checker for hybrid systems. Int. J. Softw. Tools Technol. Transfer (STTT) 1, 110–122 (1997)CrossRefzbMATHGoogle Scholar
  21. 21.
    Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid automata? J. Comput. Syst. Sci., 373–382 (1995)Google Scholar
  22. 22.
    Henzinger, T., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: POPL 2002, pp. 58–70 (2002)Google Scholar
  23. 23.
    Holzmann, G., Smith, M.: Automating software feature verification. Bell Labs Tech. J. 5(2), 72–87 (2000)CrossRefGoogle Scholar
  24. 24.
    Jha, S.K., Krogh, B.H., Weimer, J.E., Clarke, E.M.: Reachability for linear hybrid automata using iterative relaxation abstraction. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 287–300. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  25. 25.
    Mysore, V., Pnueli, A.: Refining the undecidability frontier of hybrid automata. In: Sarukkai, S., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 261–272. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  26. 26.
    Nellen, J., Ábrahám, E., Wolters, B.: A CEGAR tool for the reachability analysis of PLC-Controlled plants using hybrid automata. In: Bouabana-Tebibel, T., Rubin, S.H. (eds.) Formalisms for Reuse and Systems Integration. AISC, vol. 346, pp. 55–78. Springer, Heidelberg (2015)Google Scholar
  27. 27.
    Prabhakar, P., Duggirala, P.S., Mitra, S., Viswanathan, M.: Hybrid automata-based CEGAR for rectangular hybrid systems. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp. 48–67. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  28. 28.
    Puri, A., Borkar, V.S., Varaiya, P.: \(\epsilon \)-approximation of differential inclusions. In: Alur, R., Sontag, E.D., Henzinger, T.A. (eds.) HS 1995. LNCS, vol. 1066, pp. 362–376. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  29. 29.
    Ratschan, S., She, Z.: Safety verification of hybrid systems by constraint propagation based abstraction refinement. ACM Trans. Embed. Comput. Syst. 6(1), 573–589 (2007)CrossRefzbMATHGoogle Scholar
  30. 30.
    Roohi, N., Prabhakar, P., Viswanathan, M.: Hybridization based CEGAR for hybrid automata with affine dynamics. Technical report, University of Illinois at Urbana-Champaign (2016).
  31. 31.
    Segelken, M.: Abstraction and counterexample-guided construction of \(\omega \)-Automata for model checking of step-discrete linear hybrid models. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 433–448. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  32. 32.
    Sorea, M.: Lazy approximation for dense real-time systems. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS 2004 and FTRTFT 2004. LNCS, vol. 3253, pp. 363–378. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  33. 33.
    Vladimerou, V., Prabhakar, P., Viswanathan, M., Dullerud, G.E.: STORMED hybrid systems. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 136–147. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  34. 34.
    Zutshi, A., Deshmukh, J.V., Sankaranarayanan, S., Kapinski, J.: Multiple shooting, CEGAR-based falsification for hybrid systems. In: Proceedings of the 14th International Conference on Embedded Software (2014)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Nima Roohi
    • 1
    Email author
  • Pavithra Prabhakar
    • 2
  • Mahesh Viswanathan
    • 1
  1. 1.Department of Computer ScienceUniversity of Illinois at Urbana-ChampaignIllinoisUSA
  2. 2.Department of Computing and Information SciencesKansas State UniversityManhattanUSA

Personalised recommendations