Advertisement

Acceleration in Multi-PushDown Systems

  • Mohamed Faouzi Atig
  • K. Narayan Kumar
  • Prakash Saivasan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9636)

Abstract

Multipushdown systems (MPDS) are formal models of multi-threaded recursive programs. They are turing powerful and hence one considers under-approximation techniques in their analysis. We study the use of loop accelerations in conjunction with bounded context analysis.

Keywords

Regular Language Context Switch Finite State Automaton Reachability Problem Rational Language 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Annichini, A., Asarin, E., Bouajjani, A.: Symbolic techniques for parametric reasoning about counter and clock systems. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 419–434. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. 2.
    Atig, M.F., Bollig, B., Habermehl, P.: Emptiness of multi-pushdown automata is 2ETIME-complete. In: Ito, M., Toyama, M. (eds.) DLT 2008. LNCS, vol. 5257, pp. 121–133. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Atig, M.F.: Model-checking of ordered multi-pushdown automata. Logical Methods Comput. Sci. 8(3), 1–31 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Atig, M.F., Bouajjani, A., Narayan Kumar, K., Saivasan, P.: Linear-time model-checking for multithreaded programs under scope-bounding. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, vol. 7561, pp. 152–166. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Atig, M.F., Bouajjani, A., Qadeer, S.: Context-bounded analysis for concurrent programs with dynamic creation of threads. Logical Methods Comput. Sci. 7(4), 107–123 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Atig, M.F., Narayan Kumar, K., Saivasan, P.: Adjacent ordered multi-pushdown systems. In: Béal, M.-P., Carton, O. (eds.) DLT 2013. LNCS, vol. 7907, pp. 58–69. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Bardin, S., Finkel, A., Leroux, J., Petrucci, L.: FAST: acceleration from theory to practice. STTT 10(5), 401–424 (2008)CrossRefGoogle Scholar
  8. 8.
    Bardin, S., Finkel, A., Leroux, J., Schnoebelen, P.: Flat acceleration in symbolic model checking. In: Peled, D.A., Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707, pp. 474–488. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Bérard, B., Fribourg, L.: Reachability analysis of (timed) Petri nets using real arithmetic. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 178–193. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  10. 10.
    Berstel, J.: Transductions and context-free langages. TeubnerStudienbucher Informatik. Springer, Heidelberg (1979)CrossRefzbMATHGoogle Scholar
  11. 11.
    Boigelot, B.: On iterating linear transformations over recognizable sets of integers. Theor. Comput. Sci. 309(1–3), 413–468 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Boigelot, B.: Domain-specific regular acceleration. STTT 14(2), 193–206 (2012)CrossRefGoogle Scholar
  13. 13.
    Boigelot, B., Wolper, P.: Symbolic verification with periodic sets. In: Dill, D.L. (ed.) Computer Aided Verification. LNCS, vol. 818, pp. 55–67. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  14. 14.
    Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata: application to model-checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  15. 15.
    Bouajjani, A., Esparza, J., Schwoon, S., Strejček, J.: Reachability analysis of multithreaded software with asynchronous communication. In: Sarukkai, S., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 348–359. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Bouajjani, A., Habermehl, P.: Symbolic reachability analysis of FiFo-channel systems with nonregular sets of configurations. Theor. Comput. Sci. 221(1–2), 211–250 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Cadilhac, M., Finkel, A., McKenzie, P.: On the expressiveness of Parikh automata and related models. In: NCMA. books@ocg.at, vol. 282, pp. 103–119. Austrian Computer Society (2011)Google Scholar
  18. 18.
    Cadilhac, M., Finkel, A., McKenzie, P.: Bounded parikh automata. Int. J. Found. Comput. Sci. 23(8), 1691–1710 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Caucal, D.: On the regular structure of prefix rewriting. Theor. Comput. Sci. 106(1), 61–86 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Esparza, J., Knoop, J., Majumdar, R.: An automata-theoretic approach to interprocedural data-flow analysis. In: Thomas, W. (ed.) FOSSACS 1999. LNCS, vol. 1578, pp. 14–30. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  21. 21.
    Esparza, J., Ganty, P., Majumdar, R.: A perfect model for bounded verification. In: LICS, pp. 285–294. IEEE Computer Society (2012)Google Scholar
  22. 22.
    Esparza, J., Ganty, P., Poch, T.: Pattern-based verification for multithreaded programs. ACM Trans. Program. Lang. Syst. 36(3), 9:1–9:29 (2014)CrossRefGoogle Scholar
  23. 23.
    Esparza, J., Kiefer, S., Schwoon, S.: Abstraction refinement with craig interpolation and symbolic pushdown systems. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 489–503. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  24. 24.
    Finkel, A.: A generalization of the procedure of Karp and Miller to well structured. In: Ottmann, T. (ed.) ICALP 1987. LNCS, vol. 267, pp. 499–508. Springer, Heidelberg (1987)CrossRefGoogle Scholar
  25. 25.
    Finkel, A., Leroux, J.: How to compose Presburger-accelerations: Applications to broadcast protocols. In: Agrawal, M., Seth, A.K. (eds.) FSTTCS 2002. LNCS, vol. 2556, pp. 145–156. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  26. 26.
    Finkel, A., Willems, B., Wolper, P.: A direct symbolic approach to model checking pushdown systems. Electr. Notes Theor. Comput. Sci. 9, 27–37 (1997)CrossRefzbMATHGoogle Scholar
  27. 27.
    Ganty, P., Majumdar, R., Monmege, B.: Bounded underapproximations. FMSD 40(2), 206–231 (2012)zbMATHGoogle Scholar
  28. 28.
    Heußner, A., Leroux, J., Muscholl, A., Sutre, G.: Reachability analysis of communicating pushdown systems. In: Ong, L. (ed.) FOSSACS 2010. LNCS, vol. 6014, pp. 267–281. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  29. 29.
    Karp, R.M., Miller, R.E.: Parallel program schemata. J. Comput. Syst. Sci. 3(2), 147–195 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Kelly, W., Pugh, W., Rosser, E., Shpeisman, T.: Transitive closure of infinite graphs and its applications. J. Parallel Program. 24(6), 579–598 (1996)Google Scholar
  31. 31.
    Klaedtke, F., Rueß, H.: Monadic second-order logics with cardinalities. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) Automata, Languages and Programming. LNCS, vol. 2719, pp. 681–696. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  32. 32.
    La Torre, S., Madhusudan, P., Parlato, G.: Context-bounded analysis of concurrent queue systems. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 299–314. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  33. 33.
    La Torre, S., Madhusudan, P., Parlato, G.: Reducing context-bounded concurrent reachability to sequential reachability. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 477–492. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  34. 34.
    Lal, A., Reps, T.W.: Reducing concurrent analysis under a context bound to sequential analysis. FMSD 35(1), 73–97 (2009)zbMATHGoogle Scholar
  35. 35.
    Lal, A., Touili, T., Kidd, N., Reps, T.: Interprocedural analysis of concurrent programs under a context bound. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 282–298. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  36. 36.
    Leroux, J.: Acceleration for Petri nets. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 1–4. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  37. 37.
    Leroux, J., Sutre, G.: Flat counter automata almost everywhere!. In: Peled, D.A., Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707, pp. 489–503. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  38. 38.
    Musuvathi, M., Qadeer, S.: Iterative context bounding for systematic testing of multithreaded programs. In: PLDI, pp. 446–455. ACM (2007)Google Scholar
  39. 39.
    Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93–107. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  40. 40.
    Reps, T., Schwoon, S., Jha, S.: Weighted pushdown systems and their application to interprocedural dataflow analysis. In: Cousot, R. (ed.) Static Analysis. LNCS, vol. 2694, pp. 189–213. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  41. 41.
    Song, F., Touili, T.: Pushdown model checking for malware detection. STTT 16(2), 147–173 (2014)CrossRefzbMATHGoogle Scholar
  42. 42.
    Wong, K.: Parikh automata with pushdown stack. Diploma thesis, RWTH Aachen (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Mohamed Faouzi Atig
    • 1
  • K. Narayan Kumar
    • 2
  • Prakash Saivasan
    • 2
  1. 1.Uppsala UniversityUppsalaSweden
  2. 2.Chennai Mathematical InstituteChennaiIndia

Personalised recommendations