Parameterized Compositional Model Checking

  • Kedar S. NamjoshiEmail author
  • Richard J. TreflerEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9636)


The Parameterized Compositional Model Checking Problem (PCMCP) is to decide, using compositional proofs, whether a property holds for every instance of a parameterized family of process networks. Compositional analysis focuses attention on the neighborhood structure of processes in the network family. For the verification of safety properties, the PCMCP is shown to be much more tractable than the more general Parameterized Model Checking Problem (PMCP). For example, the PMCP is undecidable for ring networks while the PCMCP is decidable in polynomial time. This result generalizes to toroidal mesh networks and related networks for describing parallel architectures. Decidable models of the PCMCP are also shown for networks of control and user processes. The results are based on the demonstration of compositional cutoffs; that is, small instances whose compositional proofs generalize to the entire parametric family. There are, however, control-user models where the PCMCP and the PMCP are both undecidable.


Polynomial Time User Process Satisfiability Modulo Theory Ring Network Linear Temporal Logic Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.-K.: General decidability theorems for infinite-state systems. In: LICS, pp. 313–321. IEEE Computer Society (1996)Google Scholar
  2. 2.
    Abdulla, P.A., Haziza, F., Holík, L.: All for the price of few. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp. 476–495. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  3. 3.
    Akers, S.B., Krishnamurthy, B.: A group-theoretic model for symmetric interconnection networks. IEEE Trans. Comput. 38(4), 555–566 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Alur, R., Henzinger, T.: Reactive modules. In: IEEE LICS (1996)Google Scholar
  5. 5.
    Apt, K.R., Kozen, D.: Limits for automatic verification of finite-state concurrent systems. Inf. Process. Lett. 22(6), 307–309 (1986)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Clarke, E., Enders, R., Filkorn, T., Jha, S.: Exploiting symmetry in temporal logic model checking. Formal Methods Syst. Des. 9(1/2), 77–104 (1996)CrossRefGoogle Scholar
  7. 7.
    Clarke, E., Talupur, M., Veith, H.: Environment abstraction for parameterized verification. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 126–141. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Dijkstra, E., Scholten, C.: Predicate Calculus and Program Semantics. Springer, New York (1990)CrossRefzbMATHGoogle Scholar
  9. 9.
    Emerson, E., Namjoshi, K.: Reasoning about rings. In: ACM Symposium on Principles of Programming Languages (1995)Google Scholar
  10. 10.
    Emerson, E., Sistla, A.: Symmetry and model checking. Formal Methods in System Design 9(1/2), 105–131 (1996)CrossRefGoogle Scholar
  11. 11.
    Esparza, J., Ganty, P., Majumdar, R.: Parameterized verification of asynchronous shared-memory systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 124–140. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. 12.
    Fang, Y., Piterman, N., Pnueli, A., Zuck, L.D.: Liveness with Invisible Ranking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 223–238. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    German, S., Sistla, A.: Reasoning about systems with many processes. J. ACM 39(3), 675–735 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Golubitsky, M., Stewart, I.: Nonlinear dynamics of networks: the groupoid formalism. Bull. Amer. Math. Soc. 43, 305–364 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Gopalakrishnan, G., Kriby, R.M., Siegel, S.F., Thakur, R., Gropp, W., Lusk, E., De Supinski, B.R., Schulz, M., Bronevetsky, G.: Formal analysis of MPI-based parallel programs. Commun. of the ACM 54, 82–91 (2011)CrossRefGoogle Scholar
  16. 16.
    Hayes, J.P., Mudge, T.N., Stout, Q.F., Colley, S., Palmer, J.: Architecture of a hypercube supercomputer. In: Conference on Parallel Processing, pp. 653–660 (1986)Google Scholar
  17. 17.
    Jacobs, S., Bloem, R.: Parameterized synthesis. Logical Methods Comput. Sci. 10(1), 1–29 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Kurshan, R.: Computer-Aided Verification of Coordinating Processes: TheAutomata-Theoretic Approach. Princeton University Press, Princeton (1994)Google Scholar
  19. 19.
    Lamport, L.: Proving the correctness of multiprocess programs. IEEE Trans. Softw. Eng. 3(2), 125–143 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems: Safety. Springer, New York (1995)CrossRefzbMATHGoogle Scholar
  21. 21.
    Minsky, M.: Computation: finite and infinite machines. Prentice-Hall, Englewood Cliffs (1967)zbMATHGoogle Scholar
  22. 22.
    Namjoshi, K.S., Trefler, R.J.: Local symmetry and compositional verification. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 348–362. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  23. 23.
    Namjoshi, K.S., Trefler, R.J.: Uncovering symmetries in irregular process networks. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp. 496–514. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  24. 24.
    Namjoshi, K.S., Trefler, R.J.: Analysis of dynamic process networks. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 164–178. Springer, Heidelberg (2015)Google Scholar
  25. 25.
    Namjoshi, K.S., Trefler, R.J.: Loop freedom in AODVv2. In: Graf, S., Viswanathan, M. (eds.) Formal Techniques for Distributed Objects, Components, and Systems. LNCS, vol. 9039, pp. 98–112. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  26. 26.
    Owicki, S.S., Gries, D.: Verifying properties of parallel programs: An axiomatic approach. Commun. ACM 19(5), 279–285 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Pnueli, A., Ruah, S., Zuck, L.D.: Automatic deductive verification with invisible invariants. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 82–97. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  28. 28.
    Preparata, F.P., Vuillemin, J.: The cube-connected cycles: a versatile network for parallel computation. CACM 24(5), 300–309 (1981)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Sánchez, A., Sánchez, C.: LEAP: a tool for the parametrized verification of concurrent datatypes. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 620–627. Springer, Heidelberg (2014)Google Scholar
  30. 30.
    Sanchez, A., Sanchez, C.: Parametrized invariance for infinite state processes. Acta Informatica 52(6), 525–557 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Seitz, C.L.: The cosmic cube. Commun. ACM 28, 22–33 (1985)CrossRefGoogle Scholar
  32. 32.
    Siegel, S.F., Avrunin, G.S.: Verification of MPI-based software for scientific computation. In: Graf, S., Mounier, L. (eds.) SPIN 2004. LNCS, vol. 2989, pp. 286–303. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  33. 33.
    Siegel, S.F., Gopalakrishnan, G.: Formal analysis of message passing. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 2–18. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Bell Laboratories, NokiaMurray HillUSA
  2. 2.University of WaterlooWaterlooCanada

Personalised recommendations