Advertisement

Advances in Symbolic Probabilistic Model Checking with PRISM

  • Joachim Klein
  • Christel Baier
  • Philipp Chrszon
  • Marcus Daum
  • Clemens  Dubslaff
  • Sascha Klüppelholz
  • Steffen Märcker
  • David Müller
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9636)

Abstract

For modeling and reasoning about complex systems, symbolic methods provide a prominent way to tackle the state explosion problem. It is well known that for symbolic approaches based on binary decision diagrams (BDD), the ordering of BDD variables plays a crucial role for compact representations and efficient computations. We have extended the popular probabilistic model checker PRISM with support for automatic variable reordering in its multi-terminal-BDD-based engines and report on benchmark results. Our extensions additionally allow the user to manually control the variable ordering at a finer-grained level. Furthermore, we present our implementation of the symbolic computation of quantiles and support for multi-reward-bounded properties, automata specifications and accepting end component computations for Streett conditions.

Keywords

Model Check Variable Order Markov Decision Process Binary Decision Diagram Prism Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Andova, S., Hermanns, H., Katoen, J.-P.: Discrete-time rewards model-checked. In: Larsen, K.G., Niebert, P. (eds.) FORMATS 2003. LNCS, vol. 2791, pp. 88–104. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Babiak, T., Blahoudek, F., Duret-Lutz, A., Klein, J., Křetínský, J., Müller, D., Parker, D., Strejček, J.: The Hanoi omega-automata format. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 479–486. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  3. 3.
    Bahar, R.I., Frohm, E.A., Gaona, C.M., Hachtel, G.D., Macii, E., Pardo, A., Somenzi, F.: Algebraic decision diagrams and their applications. Formal Methods Syst. Des. 10(2/3), 171–206 (1997)CrossRefGoogle Scholar
  4. 4.
    Baier, C., Clarke, E.M., Hartonas-Garmhausen, V., Kwiatkowska, M.Z., Ryan, M.: Symbolic model checking for probabilistic processes. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256, pp. 430–440. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  5. 5.
    Baier, C., Daum, M., Dubslaff, C., Klein, J., Klüppelholz, S.: Energy-utility quantiles. In: Badger, J.M., Rozier, K.Y. (eds.) NFM 2014. LNCS, vol. 8430, pp. 285–299. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  6. 6.
    Baier, C., Groesser, M., Ciesinski, F.: Quantitative analysis under fairness constraints. In: Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799, pp. 135–150. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Baier, C., Klein, J., Klüppelholz, S., Märcker, S.: Computing conditional probabilities in Markovian models efficiently. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014 (ETAPS). LNCS, vol. 8413, pp. 515–530. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  8. 8.
    Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model checking: 10\(^{20}\) states and beyond. Inf. Comput. 98(2), 142–170 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Chatterjee, K., Gaiser, A., Křetínský, J.: Automata with generalized rabin pairs for probabilistic model checking and LTL synthesis. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 559–575. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  10. 10.
    Ciardo, G., Miner, A.S., Wan, M.: Advanced features in SMART: the stochastic model checking analyzer for reliability and timing. SIGMETRICS Perform. Eval. Rev. 36(4), 58–63 (2009)CrossRefGoogle Scholar
  11. 11.
    Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebastiani, R., Tacchella, A.: NuSMV 2: an opensource tool for symbolic model checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 359–364. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Donaldson, A.F., Miller, A., Parker, D.: Language-level symmetry reduction for probabilistic model checking. In: Proceedings of the Quantitative Evaluation of Systems (QEST 2009), pp. 289–298. IEEE (2009)Google Scholar
  13. 13.
    Dubslaff, C., Baier, C., Klüppelholz, S.: Probabilistic model checking for feature-oriented systems. Trans. Aspect-Oriented Softw. Dev. 12, 180–220 (2015)Google Scholar
  14. 14.
    Esparza, J., Křetínský, J.: From LTL to deterministic automata: a Safraless compositional approach. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 192–208. Springer, Heidelberg (2014)Google Scholar
  15. 15.
    Fujita, M., McGeer, P.C., Yang, J.C.-Y.: Multi-terminal binary decision diagrams: An efficient data structure for matrix representation. Formal Methods Syst. Des. 10(2/3), 149–169 (1997)CrossRefGoogle Scholar
  16. 16.
    Haase, C., Kiefer, S.: The odds of staying on budget. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 234–246. Springer, Heidelberg (2015)Google Scholar
  17. 17.
    Hachtel, G.D., Macii, E., Pardo, A., Somenzi, F.: Markovian analysis of large finite state machines. IEEE Trans. CAD Integr. Circ., Syst. 15(12), 1479–1493 (1996)CrossRefGoogle Scholar
  18. 18.
    Hartonas-Garmhausen, V., Campos, S., Clarke, E.: ProbVerus: probabilistic symbolic model checking. In: Katoen, J.-P. (ed.) ARTS 1999. LNCS, vol. 1601, pp. 96–110. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  19. 19.
    Hermanns, H., Kwiatkowska, M.Z., Norman, G., Parker, D., Siegle, M.: On the use of MTBDDs for performability analysis and verification of stochastic systems. J. Logic Algebr. Program. 56(1–2), 23–67 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Klein, J., Baier, C.: Experiments with deterministic \(\omega \)-automata for formulas of linear temporal logic. Theoret. Comput. Sci. 363(2), 182–195 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Klein, J., Baier, C., Chrszon, P., Daum, M., Dubslaff, C., Klüppelholz, S., Märcker, S., Müller, D.: Advances in symbolic probabilistic model checking with PRISM (extended version) (2016). http://wwwtcs.inf.tu-dresden.de/ALGI/PUB/TACAS16/
  22. 22.
    Komárková, Z., Křetínský, J.: Rabinizer 3: Safraless translation of LTL to small deterministic automata. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp. 235–241. Springer, Heidelberg (2014)Google Scholar
  23. 23.
    Kuntz, M., Siegle, M.: CASPA: symbolic model checking of stochastic systems. In: Proceedings of Measuring, Modelling and Evaluation of Computer and Communication Systems (MMB 2006), pp. 465–468. VDE Verlag (2006)Google Scholar
  24. 24.
    Kwiatkowska, M.Z., Norman, G., Parker, D.: Probabilistic symbolic model checking with PRISM: a hybrid approach. Softw. Tools Technol. Transfer 6(2), 128–142 (2004)zbMATHGoogle Scholar
  25. 25.
    Kwiatkowska, M., Norman, G., Parker, D.: Symmetry reduction for probabilistic model checking. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 234–248. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  26. 26.
    Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  27. 27.
    Kwiatkowska, M.Z., Norman, G., Parker, D., The PRISM benchmark suite. In: Proceedings of Quantitative Evaluation of Systems (QEST 2012), pp. 203–204. IEEE (2012). https://github.com/prismmodelchecker/prism-benchmarks/
  28. 28.
    Lampka, K.: A symbolic approach to the state graph based analysis of high-level Markov reward models. PhD thesis, Universität Erlangen-Nürnberg (2007)Google Scholar
  29. 29.
    Löding, C.: Optimal bounds for transformations of \(\omega \)-automata. In: Pandu Rangan, C., Raman, V., Sarukkai, S. (eds.) FST TCS 1999. LNCS, vol. 1738, pp. 97–109. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  30. 30.
    Maisonneuve, V.: Automatic heuristic-based generation of MTBDD variable orderings for PRISM models. ENS Cachan & Oxford University, Internship report (2009). http://www.prismmodelchecker.org/papers/vivien-bdds-report.pdf
  31. 31.
    McMillan, K.L.: Symbolic Model Checking. Kluwer, Norwell (1993)CrossRefzbMATHGoogle Scholar
  32. 32.
    Miner, A.S., Parker, D.: Symbolic representations and analysis of large probabilistic systems. In: Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P., Siegle, M. (eds.) Validation of Stochastic Systems. LNCS, vol. 2925, pp. 296–338. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  33. 33.
    Panda, S., Somenzi, F.: Who are the variables in your neighborhood. In: Proceedings of the Computer-Aided Design (ICCAD 1995), pp. 74–77. IEEE (1995)Google Scholar
  34. 34.
    Parker, D.: Implementation of Symbolic Model Checking for Probabilistic Systems. PhD thesis, University of Birmingham (2002)Google Scholar
  35. 35.
    PRISM model checker. http://www.prismmodelchecker.org/
  36. 36.
    Rudell, R.: Dynamic variable ordering for ordered binary decision diagrams. In: Proceedings of the Computer-Aided Design (ICCAD 1993), pp. 42–47. IEEE (1993)Google Scholar
  37. 37.
    Somenzi, F.: CUDD: Colorado University decision diagram package. http://vlsi.colorado.edu/~fabio/CUDD/
  38. 38.
    Ummels, M., Baier, C.: Computing quantiles in markov reward models. In: Pfenning, F. (ed.) FOSSACS 2013 (ETAPS 2013). LNCS, vol. 7794, pp. 353–368. Springer, Heidelberg (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Joachim Klein
    • 1
  • Christel Baier
    • 1
  • Philipp Chrszon
    • 1
  • Marcus Daum
    • 1
  • Clemens  Dubslaff
    • 1
  • Sascha Klüppelholz
    • 1
  • Steffen Märcker
    • 1
  • David Müller
    • 1
  1. 1.Institute of Theoretical Computer ScienceTechnische Universität DresdenDresdenGermany

Personalised recommendations