Probabilistic CTL\(^{*}\): The Deductive Way

  • Rayna Dimitrova
  • Luis María Ferrer Fioriti
  • Holger Hermanns
  • Rupak Majumdar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9636)


Complex probabilistic temporal behaviours need to be guaranteed in robotics and various other control domains, as well as in the context of families of randomized protocols. At its core, this entails checking infinite-state probabilistic systems with respect to quantitative properties specified in probabilistic temporal logics. Model checking methods are not directly applicable to infinite-state systems, and techniques for infinite-state probabilistic systems are limited in terms of the specifications they can handle.

This paper presents a deductive approach to the verification of countable-state systems against properties specified in probabilistic CTL\(^{*}\), on models featuring both nondeterministic and probabilistic choices. The deductive proof system we propose lifts the classical proof system by Kesten and Pnueli to the probabilistic setting. However, the soundness arguments are completely distinct and go via the theory of martingales. Completeness results for the finite-state case and an infinite-state example illustrate the effectiveness of our approach.



This work is supported by the EU FP7 projects 295261 (MEALS) and 318490 (SENSATION), by the DFG Transregional Collaborative Research Centre SFB/TR 14 AVACS, and by the CDZ project 1023 (CAP).


  1. 1.
    Arons, T., Pnueli, A., Zuck, L.D.: Parameterized verification by probabilistic abstraction. In: Gordon, A.D. (ed.) FOSSACS 2003. LNCS, vol. 2620, pp. 87–102. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge (2008)MATHGoogle Scholar
  3. 3.
    Bertsekas, D.P., Tsitsiklis, J.N.: An analysis of stochastic shortest path problems. Math. Oper. Res. 16(3), 580–595 (1991)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bianco, A., de Alfaro, L.: Model checking of probabilistic and nondeterministic systems. In: Thiagarajan, P.S. (ed.) FSTTCS. LNCS, pp. 499–513. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  5. 5.
    Bournez, O., Garnier, F.: Proving positive almost-sure termination. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 323–337. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Chakarov, A., Sankaranarayanan, S.: Probabilistic program analysis with martingales. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 511–526. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. J. ACM 42(4), 857–907 (1995)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    de Alfaro, L.: Formal verification of probabilistic systems. PhD thesis, Standford (1997)Google Scholar
  9. 9.
    de Alfaro, L., Kwiatkowska, M., Norman, G., Parker, D., Segala, R.: Symbolic model checking of probabilistic processes using MTBDDs and the Kronecker representation. In: Graf, S. (ed.) TACAS 2000. LNCS, vol. 1785, p. 395. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. 10.
    Dimitrova, R., Ferrer Fioriti, L.M., Hermanns, H., Majumdar, R.: PCTL\(^*\): the deductive way (extended version). Reports of SFB/TR 14 AVACS 114, (2016).
  11. 11.
    Durrett, R.: Probability: Theory and Examples. Series in Statistical and Probabilistic Mathematics, 4th edn. Cambridge University Press, New York (2010)CrossRefMATHGoogle Scholar
  12. 12.
    Esparza, J., Gaiser, A., Kiefer, S.: Proving termination of probabilistic programs using patterns. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 123–138. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Ferrer Fioriti, L.M., Hermanns, H.: Probabilistic termination: soundness, completeness, and compositionality. In: POPL, pp. 489–501 (2015)Google Scholar
  14. 14.
    Filar, J., Vrieze, K.: Competitive Markov Decision Processes. Springer, Heidelberg (1997)MATHGoogle Scholar
  15. 15.
    Francez, N.: Fairness. Texts and Monographs in Computer Science. Springer, Heidelberg (1986)CrossRefMATHGoogle Scholar
  16. 16.
    Hart, S., Sharir, M., Pnueli, A.: Termination of probabilistic concurrent program. ACM Trans. Program. Lang. Syst. 5(3), 356–380 (1983)CrossRefMATHGoogle Scholar
  17. 17.
    Hurd, J.: Formal verification of probabilistic algorithms. PhD thesis, University of Cambridge (2001)Google Scholar
  18. 18.
    Katoen, J.-P., McIver, A.K., Meinicke, L.A., Morgan, C.C.: Linear-invariant generation for probabilistic programs. In: Cousot, R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 390–406. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  19. 19.
    Kesten, Y., Pnueli, A.: A compositional approach to CTL* verification. Theor. Comput. Sci. 331(2–3), 397–428 (2005)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM: probabilistic model checking for performance and reliability analysis. SIGMETRICS Perform. Eval. Rev. 36(4), 40–45 (2009)CrossRefGoogle Scholar
  21. 21.
    McIver, A., Morgan, C.: Abstraction, Refinement and Proof for Probabilistic Systems. Monographs in Computer Science. Springer, Heidelberg (2005)MATHGoogle Scholar
  22. 22.
    Pnueli, A.: On the extremely fair treatment of probabilistic algorithms. In: Proceedings of the 15th Annual ACM Symposium on Theory of Computing, pp. 278–290 (1983)Google Scholar
  23. 23.
    Pnueli, A., Zuck, L.D.: Probabilistic verification. Inf. Comput. 103(1), 1–29 (1993)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Rabin, M.O.: The choice coordination problem. Acta Informatica 17, 121–134 (1982)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Slanina, M., Sipma, H.B., Manna, Z.: Deductive verification of alternating systems. Form. Asp. Comput. 20(4–5), 507–560 (2008)CrossRefMATHGoogle Scholar
  26. 26.
    Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state programs. In: FOCS, pp. 327–338 (1985)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Rayna Dimitrova
    • 1
  • Luis María Ferrer Fioriti
    • 2
  • Holger Hermanns
    • 2
  • Rupak Majumdar
    • 1
  1. 1.MPI-SWSKaiserslautern and SaarbrückenGermany
  2. 2.Saarland UniversitySaarbrückenGermany

Personalised recommendations