PVAIR: Partial Variable Assignment InterpolatoR

  • Pavel Jančík
  • Leonardo Alt
  • Grigory Fedyukovich
  • Antti E. J. Hyvärinen
  • Jan Kofroň
  • Natasha Sharygina
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9633)

Abstract

Despite its recent popularity, program verification has to face practical limitations hindering its everyday use. One of these issues is scalability, both in terms of time and memory consumption. In this paper, we present Partial Variable Assignment InterpolatoR (PVAIR) – an interpolation tool exploiting partial variable assignments to significantly improve performance when computing several specialized Craig interpolants from a single proof. Subsequent interpolant processing during the verification process can thus be more efficient, improving scalability of the verification as such. We show with a wide range of experiments how our methods improve the interpolant computation in terms of their size. In particular, (i) we used benchmarks from the SAT competition and (ii) performed experiments in the domain of software upgrade checking.

References

  1. 1.
    Albarghouthi, A., Gurfinkel, A., Chechik, M.: From under-approximations to over-approximations and back. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 157–172. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Bar-Ilan, O., Fuhrmann, O., Hoory, S., Shacham, O., Strichman, O.: Linear-time reductions of resolution proofs. In: Chockler, H., Hu, A.J. (eds.) HVC 2008. LNCS, vol. 5394, pp. 114–128. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Boudou, J., Fellner, A., Woltzenlogel Paleo, B.: Skeptik: a proof compression system. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS, vol. 8562, pp. 374–380. Springer, Heidelberg (2014)Google Scholar
  4. 4.
    Boudou, J., Woltzenlogel Paleo, B.: Compression of propositional resolution proofs by lowering subproofs. In: Galmiche, D., Larchey-Wendling, D. (eds.) TABLEAUX 2013. LNCS, vol. 8123, pp. 59–73. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  5. 5.
    Cabodi, G., Loiacono, C., Vendraminetto, D.: Optimization techniques for craig interpolant compaction in unbounded model checking. In: DATE, pp. 1417–1422 (2013)Google Scholar
  6. 6.
    Cotton, S.: Two techniques for minimizing resolution proofs. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 306–312. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating model theory and proof theory. Symbol. Logic 22, 269–285 (1957)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    D’Silva, V., Kroening, D., Purandare, M., Weissenbacher, G.: Interpolant strength. In: Barthe, G., Hermenegildo, M. (eds.) VMCAI 2010. LNCS, vol. 5944, pp. 129–145. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 61–75. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Fedyukovich, G., Sery, O., Sharygina, N.: eVolCheck: incremental upgrade checker for C. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS, vol. 7795, pp. 292–307. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    Fontaine, P., Merz, S., Woltzenlogel Paleo, B.: Compression of propositional resolution proofs via partial regularization. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 237–251. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Jancik, P., Kofroň, J., Rollini, S.F., Sharygina, N.: On interpolants and variable assignments. In: FMCAD, pp. 123–130 (2014)Google Scholar
  13. 13.
    Jhala, R., McMillan, K.L.: A practical and complete approach to predicate refinement. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 459–473. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Kuehlmann, A., Ganai, M.K., Paruthi, V.: Circuit-based Boolean reasoning. In: DAC, pp. 232–237 (2001)Google Scholar
  15. 15.
    McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    McMillan, K.L.: An interpolating theorem prover. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 16–30. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Pudlák, P.: Lower bounds for resolution and cutting plane proofs and monotone computations. Symbol. Logic 62, 981–998 (1997)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Rollini, S.F., Alt, L., Fedyukovich, G., Hyvärinen, A.E.J., Sharygina, N.: PeRIPLO: a framework for producing effective interpolants in SAT-based software verification. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR-19 2013. LNCS, vol. 8312, pp. 683–693. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  19. 19.
    Rollini, S.F., Bruttomesso, R., Sharygina, N., Tsitovich, A.: Resolution proof transformation for compression and interpolation. Formal Methods Syst. Des. 45, 1–41 (2014)CrossRefMATHGoogle Scholar
  20. 20.
    Rollini, S.F., Sery, O., Sharygina, N.: Leveraging interpolant strength in model checking. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 193–209. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  21. 21.
    Sery, O., Fedyukovich, G., Sharygina, N.: Interpolation-based function summaries in bounded model checking. In: Eder, K., Lourenço, J., Shehory, O. (eds.) HVC 2011. LNCS, vol. 7261, pp. 160–175. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  22. 22.
    Sery, O., Fedyukovich, G., Sharygina, N.: FunFrog: bounded model checking with interpolation-based function summarization. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, vol. 7561, pp. 203–207. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  23. 23.
    Sery, O., Fedyukovich, G., Sharygina, N.: Incremental upgrade checking by means of interpolation-based function summaries. In: FMCAD, pp. 114–121 (2012)Google Scholar
  24. 24.
    Tange, O.: GNU parallel - the command-line power tool. In: The USENIX Magazine, pp. 42–47 (2011)Google Scholar
  25. 25.
    Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Slisenko, A.O. (ed.) Studies in Constructive Mathematics and Mathematical Logic, pp. 115–125. Plenum, New York (1969)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Pavel Jančík
    • 2
  • Leonardo Alt
    • 1
  • Grigory Fedyukovich
    • 1
  • Antti E. J. Hyvärinen
    • 1
  • Jan Kofroň
    • 2
  • Natasha Sharygina
    • 1
  1. 1.University of LuganoLuganoSwitzerland
  2. 2.Faculty of Mathematics and Physics Department of Distributed and Dependable SystemsCharles University in PraguePragueCzech Republic

Personalised recommendations