Advertisement

Many-Valued Institutions for Constraint Specification

  • Claudia Elena Chiriţă
  • José Luiz Fiadeiro
  • Fernando Orejas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9633)

Abstract

We advance a general technique for enriching logical systems with soft constraints, making them suitable for specifying complex software systems where parts are put together not just based on how they meet certain functional requirements but also on how they optimise certain constraints. This added expressive power is required, for example, for capturing quality attributes that need to be optimised or, more generally, for formalising what are usually called service-level agreements. More specifically, we show how institutions endowed with a graded semantic consequence can accommodate soft-constraint satisfaction problems. We illustrate our approach by showing how, in the context of service discovery, one can quantify the compatibility of two specifications and thus formalise the selection of the most promising provider of a required resource.

Keywords

Service Application Constraint Satisfaction Problem Service Discovery Residuated Lattice Soft Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors would like to thank the anonymous referees for their very useful comments and suggestions. These have lead to an improved overall readability of the paper and to a more accurate presentation of the completeness requirement of the residuated lattices.

References

  1. 1.
    Aiguier, M., Diaconescu, R.: Stratified institutions and elementary homomorphisms. Inf. Process. Lett. 103(1), 5–13 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Benavides, D., Trinidad, P., Ruiz-Cortés, A.: Automated reasoning on feature models. In: Pastor, Ó., e Cunha, J.F. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 491–503. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Bistarelli, S., Gadducci, F.: Enhancing constraints manipulation in semiring-based formalisms. In: Brewka, G., Coradeschi, S., Perini, A., Traverso, P. (eds.) ECAI, vol. 141, pp. 63–67. IOS Press (2006)Google Scholar
  4. 4.
    Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint satisfaction and optimization. J. ACM 44(2), 201–236 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bistarelli, S., Montanari, U., Rossi, F., Schiex, T., Verfaillie, G., Fargier, H.: Semiring-based CSPs and valued CSPs: frameworks, properties, and comparison. Constraints 4(3), 199–240 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bistarelli, S., Santini, F.: A nonmonotonic soft concurrent constraint language for SLA negotiation. Electr. Notes Theor. Comput. Sci. 236, 147–162 (2009)CrossRefGoogle Scholar
  7. 7.
    Bova, S.: Soft constraints processing over divisible residuated lattices. In: Sossai, C., Chemello, G. (eds.) ECSQARU 2009. LNCS, vol. 5590, pp. 887–898. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Mosses, P.D.: CASL Reference Manual, The Complete Documentation of the Common Algebraic Specification Language. LNCS, vol. 2960. Springer, Berlin (2004). doi: 10.1007/b96103 zbMATHGoogle Scholar
  9. 9.
    Cohen, D.A., Cooper, M., Jeavons, P.G., Krokhin, A.A.: Soft constraints: complexity and multimorphisms. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 244–258. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Diaconescu, R.: Graded consequence: an institution theoretic study. Soft Comput. 18(7), 1247–1267 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Fiadeiro, J.L.: Categories for Software Engineering. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  12. 12.
    Fiadeiro, J.L.: The many faces of complexity in software design. In: Hinchey, M., Coyle, L. (eds.) Conquering Complexity, pp. 3–47. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Fiadeiro, J.L., Lopes, A.: An interface theory for service-oriented design. Theor. Comput. Sci. 503, 1–30 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Fiadeiro, J.L., Lopes, A.: A model for dynamic reconfiguration in service-oriented architectures. Softw. Syst. Model. 12(2), 349–367 (2013)CrossRefGoogle Scholar
  15. 15.
    Fiadeiro, J.L., Orejas, F.: Abstract constraint data types. In: De Nicola, R., Hennicker, R. (eds.) Wirsing Festschrift. LNCS, vol. 8950, pp. 155–170. Springer, Heidelberg (2015)Google Scholar
  16. 16.
    Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices: An Algebraic Glimpse at Substructural Logics. Studies in Logic and the Foundations of Mathematics. Elsevier Science, New York (2007)zbMATHGoogle Scholar
  17. 17.
    Goguen, J.A., Burstall, R.M.: Institutions: abstract model theory for specification and programming. J. ACM 39(1), 95–146 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Harman, M., Jia, Y., Krinke, J., Langdon, W.B., Petke, J., Zhang, Y.: Search based software engineering for software product lineengineering: a survey and directions for future work. In: Gnesi, S., Fantechi, A., Heymans, P., Rubin, J., Czarnecki, K., Dhungana, D. (eds.) Software Product Line, pp. 5–18. ACM (2014)Google Scholar
  19. 19.
    Herrlich, H., Strecker, G.: Category Theory: An Introduction. Allyn and Bacon Series in Advanced Mathematics. Allyn and Bacon, Boston (1973)zbMATHGoogle Scholar
  20. 20.
    Hölzl, M.M., Meier, M., Wirsing, M.: Which soft constraints do you prefer? Electr. Notes Theor. Comput. Sci. 238(3), 189–205 (2009)CrossRefzbMATHGoogle Scholar
  21. 21.
    Mossakowski, T., Maeder, C., Lüttich, K.: The heterogeneous tool set, Hets. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 519–522. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  22. 22.
    Pierce, B.C.: Basic Category Theory for Computer Scientists. Foundations of Computing. MIT Press, Cambridge (1991)zbMATHGoogle Scholar
  23. 23.
    Sannella, D., Tarlecki, A.: Foundations of Algebraic Specification and Formal Software Development. Springer, Heidelberg (2012)CrossRefzbMATHGoogle Scholar
  24. 24.
    Schiex, T., Fargier, H., Verfaillie, G.: Valued constraint satisfaction problems: hard and easy problems. IJCAI 1(95), 631–639 (1995)Google Scholar
  25. 25.
    Ţuţu, I., Fiadeiro, J.L.: From conventional to institution-independent logic programming. J. Logic Comput. (2015). http://logcom.oxfordjournals.org/content/early/2015/06/04/logcom.exv021.abstract
  26. 26.
    Ţuţu, I., Fiadeiro, J.L.: Service-oriented logic programming. Log. Meth. Comput. Sci. 11(3), 1–38 (2015)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Wirsing, M., Clark, A., Gilmore, S., Hölzl, M., Knapp, A., Koch, N., Schroeder, A.: Semantic-based development of service-oriented systems. In: Najm, E., Pradat-Peyre, J.-F., Donzeau-Gouge, V.V. (eds.) FORTE 2006. LNCS, vol. 4229, pp. 24–45. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Claudia Elena Chiriţă
    • 1
  • José Luiz Fiadeiro
    • 1
  • Fernando Orejas
    • 2
  1. 1.Department of Computer ScienceRoyal Holloway University of LondonEghamUK
  2. 2.Dep. de Llenguatges i Sistemes InformàticsUni. Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations