Advertisement

Faceted Dynamic Information Flow via Control and Data Monads

  • Thomas Schmitz
  • Dustin Rhodes
  • Thomas H. Austin
  • Kenneth Knowles
  • Cormac Flanagan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9635)

Abstract

An application that fails to ensure information flow security may leak sensitive data such as passwords, credit card numbers, or medical records. News stories of such failures abound. Austin and Flanagan [2] introduce faceted values – values that present different behavior according to the privilege of the observer – as a dynamic approach to enforce information flow policies for an untyped, imperative \(\lambda \)-calculus.

We implement faceted values as a Haskell library, elucidating their relationship to types and monadic imperative programming. In contrast to previous work, our approach does not require modification to the language runtime. In addition to pure faceted values, our library supports faceted mutable reference cells and secure facet-aware socket-like communication. This library guarantees information flow security, independent of any vulnerabilities or bugs in application code. The library uses a control monad in the traditional way for encapsulating effects, but it also uniquely uses a second data monad to structure faceted values. To illustrate a non-trivial use of the library, we present a bi-monadic interpreter for a small language that illustrates the interplay of the control and data monads.

Keywords

Information Flow Reference Cell Covert Channel Facet Evaluation Public Interface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This research was supported by the National Science Foundation under grants CCF-1337278 and CCF-1421016.

References

  1. 1.
    Austin, T.H., Flanagan, C.: Efficient purely-dynamic information flow analysis. In: PLAS 2009. ACM Press, New York (2009)Google Scholar
  2. 2.
    Austin, T.H., Flanagan, C.: Multiple Facets for Dynamic Information Flow. In: POPL 2012, pp. 165–178. ACM Press, New York (2012)Google Scholar
  3. 3.
    Austin, T.H., et al.: Faceted execution of policy-agnostic programs. In: PLAS 2013, 15–26. ACM Press, New York (2013)Google Scholar
  4. 4.
    Buiras, P., Russo, A.: Lazy programs leak secrets. In: Riis Nielson, H., Gollmann, D. (eds.) NordSec 2013. LNCS, vol. 8208, pp. 116–122. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  5. 5.
    De Groef, W., et al.: FlowFox: a web browser with flexible and precise information flow control. In: CCS 2012, pp. 748–759. ACM Press, New York (2012)Google Scholar
  6. 6.
    Denning, D.E.: A lattice model of secure information flow. Commun. ACM 19(5), 236–243 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Denning, D.E., Denning, P.J.: Certification of programs for secure information flow. Commun. ACM 20(7), 504–513 (1977)CrossRefzbMATHGoogle Scholar
  8. 8.
    Devriese, D., Piessens, F.: Information Flow Enforcement in Monadic Libraries. In: TLDI 2011, pp. 59–72. ACM Press, New York (2011)Google Scholar
  9. 9.
    Devriese, D., Piessens, F.: Noninterference through secure multi-execution. In: Symposium on Security and Privacy, pp. 109–124. IEEE, Los Alamitos (2010)Google Scholar
  10. 10.
    Dhawan, M., Ganapathy, V.: Analyzing information flow in javascript-based browser extensions. In: ACSAC. IEEE (2009)Google Scholar
  11. 11.
    Fenton, J.S.: Memoryless subsystems. Comput. J. 17(2), 143–147 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Le Guernic, G., Banerjee, A., Jensen, T., Schmidt, D.A.: Automata-based confidentiality monitoring. In: Okada, M., Satoh, I. (eds.) ASIAN 2006. LNCS, vol. 4435, pp. 75–89. Springer, Heidelberg (2008)Google Scholar
  13. 13.
    Hedin, D., Sabelfeld, A.: Information-flow security for a core of JavaScript. In: CSF, pp. 3–18. IEEE (2012)Google Scholar
  14. 14.
    Heintze, N., Riecke, J.G.: The SLam calculus: programming with secrecy and integrity. In: POPL, pp. 365–377. ACM (1998)Google Scholar
  15. 15.
    Jang, D., et al.: An empirical study of privacy-violating information flows in JavaScript web applications. In: ACM Conference on Computer and Communications Security, pp. 270–283 (2010)Google Scholar
  16. 16.
    Jaskelioff, M., Russo, A.: Secure multi-execution in haskell. In: Clarke, E., Virbitskaite, I., Voronkov, A. (eds.) PSI 2011. LNCS, vol. 7162, pp. 170–178. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  17. 17.
    Jones, M.P., Duponcheel, L.: Composing Monads. Technical report. Research Report YALEU/DCS/RR-1004. Yale University (1993)Google Scholar
  18. 18.
    Kerschbaumer, C., Hennigan, E., Larsen, P., Brunthaler, S., Franz, M.: Towards precise and efficient information flow control in web browsers. In: Huth, M., Asokan, N., Čapkun, S., Flechais, I., Coles-Kemp, L. (eds.) TRUST 2013. LNCS, vol. 7904, pp. 187–195. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  19. 19.
    Li, P., Zdancewic, S.: Encoding information flow in haskell. In: CSFW 2006, p.12. IEEE Computer Society, Washington, DC, USA (2006)Google Scholar
  20. 20.
    Liang, S., Hudak, P., Jones, M.: Monad transformers and modular interpreters. In: Proceedings of 22nd ACM Symposium on Principles of Programming Languages. ACM Press, New York (1995)Google Scholar
  21. 21.
    Myers, A.C.: JFlow: practical mostly-static information flow control. In: Symposium on Principles of Programming Languages (POPL), pp. 228–241. ACM (1999)Google Scholar
  22. 22.
    Pottier, F., Simonet, V.: Information flow inference for ML. ACM Trans. Program. Lang. Syst. 25(1), 117–158 (2003)CrossRefzbMATHGoogle Scholar
  23. 23.
    Rafnsson, W., Sabelfeld, A.: Secure multi-execution: fine-grained, declassification-aware, and transparent. In: IEEE 26th Computer Security Foundations Symposium (CSF), pp. 33–48 (2013)Google Scholar
  24. 24.
    Russo, A., Claessen, K., Hughes, J.: A library for lightweight information-flow security in haskell. In: Haskell 2008, pp. 13–24. ACM, New York, NY, USA (2008)Google Scholar
  25. 25.
    Russo, A., Sabelfeld, A.: Dynamic vs. static flow-sensitive security analysis. In: CSF 2010, pp. 186–199. IEEE Computer Society, Washington, DC, USA (2010)Google Scholar
  26. 26.
    Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. Sel. Areas in Commun. 21(1), 5–19 (2003)CrossRefGoogle Scholar
  27. 27.
    Sabelfeld, A., Russo, A.: From dynamic to static and back: riding the roller coaster of information-flow control research. In: Pnueli, A., Virbitskaite, I., Voronkov, A. (eds.) PSI 2009. LNCS, vol. 5947, pp. 352–365. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  28. 28.
    Sabelfeld, A., Sands, D.: Declassification: dimensions and principles. J. Comput. Secur. 17(5), 517–548 (2009)CrossRefGoogle Scholar
  29. 29.
    Schmitz, T., et al.: Faceted dynamic information flow via control and data monads. In: University of California, Santa Cruz, Technical report UCSC-SOE-16-01 (2016)Google Scholar
  30. 30.
    Steele, G.L., Jr.: Building interpreters by composing monads. In: POPL 1994. ACM, Portland (1994)Google Scholar
  31. 31.
    Stefan, D., et al.: Flexible dynamic information flow control in haskell. In: Haskell 2011, 95–106. ACM, New York (2011)Google Scholar
  32. 32.
    Stefan, D., et al.: Flexible dynamic information flow control in Haskell, vol. 46(12). ACM (2011)Google Scholar
  33. 33.
    Volpano, D., Irvine, C., Smith, G.: A sound type system for secure flow analysis. J. Comput. Secur. 4(2–3), 167–187 (1996)CrossRefGoogle Scholar
  34. 34.
    Wadler, P.: The essence of functional programming. In: POPL 1992. ACM, Albuquerque, New Mexico, USA (1992)Google Scholar
  35. 35.
    Zanarini, D., Jaskelioff, M., Russo, A.: Precise enforcement of confidentiality for reactive systems. In: CSF, pp. 18–32 (2013)Google Scholar
  36. 36.
    Zdancewic, S.A.: Programming languages for information security. PhD thesis. Cornell University (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Thomas Schmitz
    • 1
  • Dustin Rhodes
    • 1
  • Thomas H. Austin
    • 2
  • Kenneth Knowles
    • 1
  • Cormac Flanagan
    • 1
  1. 1.University of California Santa CruzSanta CruzUSA
  2. 2.San José State UniversitySan JoseUSA

Personalised recommendations