A New Foundation for Finitary Corecursion
Abstract
This paper contributes to a theory of the behaviour of “finite-state” systems that is generic in the system type. We propose that such systems are modeled as coalgebras with a finitely generated carrier for an endofunctor on a locally finitely presentable category. Their behaviour gives rise to a new fixpoint of the coalgebraic type functor called locally finite fixpoint (LFF). We prove that if the given endofunctor preserves monomorphisms then the LFF always exists and is a subcoalgebra of the final coalgebra (unlike the rational fixpoint previously studied by Adámek, Milius and Velebil). Moreover, we show that the LFF is characterized by two universal properties: 1. as the final locally finitely generated coalgebra, and 2. as the initial fg-iterative algebra. As instances of the LFF we first obtain the known instances of the rational fixpoint, e.g. regular languages, rational streams and formal power-series, regular trees etc. And we obtain a number of new examples, e.g. (realtime deterministic resp. non-deterministic) context-free languages, constructively S-algebraic formal power-series (and any other instance of the generalized powerset construction by Silva, Bonchi, Bonsangue, and Rutten) and the monad of Courcelle’s algebraic trees.
References
- 1.Aczel, P., Adámek, J., Milius, S., Velebil, J.: Infinite trees and completely iterative theories: a coalgebraic view. Theoret. Comput. Sci. 300, 1–45 (2003)MathSciNetCrossRefMATHGoogle Scholar
- 2.Adámek, J., Milius, S., Velebil, J.: Semantics of higher-order recursion schemes. Log. Methods Comput. Sci. 7(1:15), 43 (2011)MathSciNetMATHGoogle Scholar
- 3.Adámek, J., Milius, S., Velebil, J.: Equational properties of iterative monads. Inf. Comput. 208, 1306–1348 (2010)MathSciNetCrossRefMATHGoogle Scholar
- 4.Adámek, J., Milius, S., Velebil, J.: Elgot theories: a new perspective of the equational properties of iteration. Math. Struct. Comput. Sci. 21(2), 417–480 (2011)MathSciNetCrossRefMATHGoogle Scholar
- 5.Adámek, J.: Free algebras and automata realizations in the language of categories. Comment. Math. Univ. Carolin. 015(4), 589–602 (1974)MathSciNetMATHGoogle Scholar
- 6.Adámek, J., Milius, S., Velebil, J.: Iterative algebras at work. Math. Struct. Comput. Sci. 16(6), 1085–1131 (2006)MathSciNetCrossRefMATHGoogle Scholar
- 7.Adámek, J., Milius, S., Velebil, J.: On second-order iterative monads. Theoret. Comput. Sci. 412(38), 4969–4988 (2011)MathSciNetCrossRefMATHGoogle Scholar
- 8.Adámek, J., Rosický, J.: Locally Presentable and Accessible Categories. Cambridge University Press, New York (1994)CrossRefMATHGoogle Scholar
- 9.Barr, M.: Coequalizers and free triples. Math. Z. 116, 307–322 (1970)MathSciNetCrossRefMATHGoogle Scholar
- 10.Bartels, F.: On generalized coinduction and probabilistic specification formats: Distributive laws in coalgebraic modelling. Ph.D. thesis, Vrije Universiteit Amsterdam.(2004)Google Scholar
- 11.Bloom, S.L., Ésik, Z.: Iteration Theories: The Equational Logic of Iterative Processes. EATCS Monographs on Theoretical Computer Science. Springer, Heidelberg (1993)CrossRefMATHGoogle Scholar
- 12.Bonsangue, M., Milius, S., Silva, A.: Sound and complete axiomatizations of coalgebraic language equivalence. ACM Trans. Comput. Log. 14((1: 7)), 52.(2013)Google Scholar
- 13.Bonsangue, M.M., Milius, S., Rot, J.: On the specification of operations on the rational behaviour of systems. In: Luttik, B., Reniers, M.A. (eds.) Proceedings of Combined Workshop on Expressiveness in Concurrency and Structural Operational Semantics (EXPRESS/SOS’12), Electronic Proceedings of Theoretical Computer Science, vol. 89, pp. 3–18.(2012)Google Scholar
- 14.Borceux, F.: Handbook of Categorical Algebra: Volume 1, Basic Category Theory. Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (1994)CrossRefMATHGoogle Scholar
- 15.Cenciarelli, P., Moggi, E.: A syntactic approach to modularity in denotational semantic. In: Proceedings of 5th CTCS. CWI Technical report.(1993)Google Scholar
- 16.Courcelle, B.: Fundamental properties of infinite trees. Theoret. Comput. Sci. 25, 95–169 (1983)MathSciNetCrossRefMATHGoogle Scholar
- 17.Droste, M., Kuich, W., Vogler, H.: Handbook of Weighted Automata, 1st edn. Springer Publishing Company, Berlin (2009)CrossRefMATHGoogle Scholar
- 18.Elgot, C.: Monadic computation and iterative algebraic theories. In: Rose, H.E., Sheperdson, J.C. (eds.) Logic Colloquium 1973, vol. 80, pp. 175–230. North-Holland Publishers, Amsterdam (1975)Google Scholar
- 19.Fliess, M.: Sur divers produits de séries formelles. Bulletin de la Société Mathématique de France 102, 181–191 (1974)MathSciNetMATHGoogle Scholar
- 20.Gabriel, P., Ulmer, F.: Lokal präsentierbare Kategorien. Lecture Notes in Mathematics, vol. 221. Springer, Heidelberg (1971)Google Scholar
- 21.Ghani, N., Lüth, C., Marchi, F.D.: Monads of coalgebras: rational terms and term graphs. Math. Struct. Comput. Sci. 15, 433–451 (2005)MathSciNetCrossRefMATHGoogle Scholar
- 22.Goncharov, Sergey: Trace Semantics via Generic Observations. In: Heckel, Reiko, Milius, Stefan (eds.) CALCO 2013. LNCS, vol. 8089, pp. 158–174. Springer, Heidelberg (2013)CrossRefGoogle Scholar
- 23.Goncharov, Sergey, Milius, Stefan, Silva, Alexandra: Towards a Coalgebraic Chomsky Hierarchy. In: Diaz, Josep, Lanese, Ivan, Sangiorgi, Davide (eds.) TCS 2014. LNCS, vol. 8705, pp. 265–280. Springer, Heidelberg (2014)Google Scholar
- 24.Harrison, M.A., Havel, I.M.: Real-time strict deterministic languages. SIAM J. Comput. 1(4), 333–349 (1972)MathSciNetCrossRefMATHGoogle Scholar
- 25.Hyland, M., Plotkin, G., Power, J.: Combining effects: sum and tensor. Theoret. Comput. Sci. 357(1–3), 70–99 (2006)MathSciNetCrossRefMATHGoogle Scholar
- 26.Jacobs, Bart: A Bialgebraic Review of Deterministic Automata, Regular Expressions and Languages. In: Futatsugi, Kokichi, Jouannaud, Jean-Pierre, Meseguer, José (eds.) Algebra, Meaning, and Computation. LNCS, vol. 4060, pp. 375–404. Springer, Heidelberg (2006)CrossRefGoogle Scholar
- 27.Klin, B.: Bialgebras for structural operational semantics: an introduction. Theoret. Comput. Sci. 412(38), 5043–5069 (2011)MathSciNetCrossRefMATHGoogle Scholar
- 28.Lambek, J.: A fixpoint theorem for complete categories. Math. Z. 103, 151–161 (1968)MathSciNetCrossRefMATHGoogle Scholar
- 29.MacLane, S.: Categories for the Working Mathematician. Graduate Texts in Mathematics, 2nd edn. Springer, New York.(1998)Google Scholar
- 30.Milius, S.: A sound and complete calculus for finite stream circuits. In: Proceedings of 25th Annual Symposium on Logic in Computer Science (LICS 2010), pp. 449–458.(2010)Google Scholar
- 31.Milius, S., Bonsangue, M.M., Myers, R.S., Rot, J.: Rational operation models. Electron. Notes Theoret. Comput. Sci. 298, 257–282. In: Mislove, M. (ed.) Proceedings of 29th conference on Mathematical Foundations of Programming Science (MFPS XXIX).(2013)Google Scholar
- 32.Milius, S., Moss, L.S.: The category theoretic solution of recursive program schemes. Theoret. Comput. Sci. 366, 3–59 (2006)MathSciNetCrossRefMATHGoogle Scholar
- 33.Milius, S., Pattinson, D., Wißmann, T.: A new foundation for finitary corecursion: the locally finite fixpoint and its properties (2015).. http://arxiv.org/abs/1601.01532
- 34.Milius, S., Wißmann, T.: Finitary corecursion for the infinitary lambda calculus. In: Proceedings of 6th Conference on Algebra and Coalgebra in Computer Science, CALCO 2015. Leibniz International Proceedings in Informatics.(2015)Google Scholar
- 35.Myers, R.: Rational coalgebraic machines in varieties: Languages, completeness and automatic proofs. Ph.D. thesis, Imperial College London, Department of Computing.(2011)Google Scholar
- 36.Petre, I., Salomaa, A.: Algebraic systems and pushdown automata. In: Droste, M., Kuich, W., Vogler, H. (eds.) Handbook of Weighted Automata. Monographs in Theoretical Computer Science. An EATCS Series, pp. 257–289.. Springer, Heidelberg (2009)Google Scholar
- 37.Plotkin, G., Turi, D.: Towards a mathematical operational semantics. In: Proceedings of 12th LICS Conference, pp. 280–291. IEEE Computer Society Press.(1997)Google Scholar
- 38.Rutten, J.J.M.M.: Automata and Coinduction. In: Sangiorgi, Davide, de Simone, Robert (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 194–218. Springer, Heidelberg (1998)CrossRefGoogle Scholar
- 39.Rutten, J.: Universal coalgebra: a theory of systems. Theoret. Comput. Sci. 249(1), 3–80 (2000)MathSciNetCrossRefMATHGoogle Scholar
- 40.Silva, A., Bonchi, F., Bonsangue, M.M., Rutten, J.J.M.M.: Quantitative kleene coalgebras. Inf. Comput. 209(5), 822–849 (2011)MathSciNetCrossRefMATHGoogle Scholar
- 41.Silva, A., Bonchi, F., Bonsangue, M.M., Rutten, J.: Generalizing determinization from automata to coalgebras. Log. Meth. Comput. Sci. 9(1), 1–27 (2013)MathSciNetCrossRefMATHGoogle Scholar
- 42.Silva, A., Bonsangue, M.M., Rutten, J.: Non-deterministic Kleene coalgebras. Log. Meth. Comput. Sci. 6(3: 23), 39.(2010)Google Scholar
- 43.Winter, J., Bonsangue, M., Rutten, J.: Coalgebraic characterizations of context-free languages. Log. Meth. Comput. Sci. 9(3), 1–39 (2013)MathSciNetCrossRefMATHGoogle Scholar
- 44.Winter, J., Bonsangue, M.M., Rutten, J.J.: Context-free coalgebras. J. Comput. Syst. Sci. 81(5), 911–939 (2015)MathSciNetCrossRefMATHGoogle Scholar
- 45.Wißmann, T.: The locally finite fixpoint and its properties. Master’s thesis, Friedrich-Alexander Universität Erlangen-Nürnberg (April 2015). http://thorsten-wissmann.de/theses/ma-wissmann.pdf