Towards a Formal Theory of Graded Monads

  • Soichiro Fujii
  • Shin-ya Katsumata
  • Paul-André Melliès
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9634)

Abstract

We initiate a formal theory of graded monads whose purpose is to adapt and to extend the formal theory of monads developed by Street in the early 1970’s. We establish in particular that every graded monad can be factored in two different ways as a strict action transported along a left adjoint functor. We also explain in what sense the first construction generalizes the Eilenberg-Moore construction while the second construction generalizes the Kleisli construction. Finally, we illustrate the Eilenberg-Moore construction on the graded state monad induced by any object V in a symmetric monoidal closed category \(\mathscr {C}\).

References

  1. 1.
    Baković, I.: Fibrations of bicategories. Available on the ArXiVGoogle Scholar
  2. 2.
    Bénabou, J.: Introduction to bicategories. In: Reports of the Midwest Category Seminar. Lecture Notes in Mathematics, vol. 47, pp. 1–77. Springer, Heidelberg (1967)Google Scholar
  3. 3.
    Berger, C., Melliès, P.-A., Weber, M.: Monads with arities and their associated theories. J. Pure Appl. Algebra 216, 2029–2048 (2012)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Dal Lago, U.: A short introduction to implicit computational complexity. In: Bezhanishvili, N., Goranko, V. (eds.) ESSLLI 2010 and ESSLLI 2011. LNCS, vol. 7388, pp. 89–109. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Dal Lago, U., Gaboardi, M.: Linear dependent types and relative completeness. Log. Meth. Comput. Sci. 8(4), 12 (2012)MathSciNetMATHGoogle Scholar
  6. 6.
    Grellois, C., Melliès, P.-A.: Relational semantics of linear logic, higher-order model checking. In: Proceedings of CSL 2015, pp. 260–276 (2015)Google Scholar
  7. 7.
    Hermida, C.: Descent on 2-fibrations and strongly 2-regular 2-categories. Appl. Categorical Struct. 12(5–6), 427–459 (2004)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Katsumata, S.-y.: Parametric effect monads and semantics of effect systems. In: Proceedings of POPL 2014, pp. 633–645. ACM (2014)Google Scholar
  9. 9.
    Melliès, P.-A.: Towards an algebra of duality. Talk given during the workshop Linear Logic, Ludics, Implicit Complexity, Operator Algebras, dedicated to Jean-Yves Girard on the occasion of his 60th birthday, May 2007Google Scholar
  10. 10.
    Melliès, P.-A.: Game semantics in string diagrams. In: Proceedings of Logic In Computer Science, LICS, Dubrovnik (2012)Google Scholar
  11. 11.
    Melliès, P.-A.: Segal condition meets computational effects. LICS (2010)Google Scholar
  12. 12.
    Melliès, P.-A.: Sharing and duplication in tensorial logic. Invited talk at the 4th International workshop on Developments in Implicit Computational complexity (DICE), Rome, March 2013Google Scholar
  13. 13.
    Melliès, P.-A.: Parametric monads and enriched adjunctions. Syntax and Semantics of Low Level Languages, LOLA, Dubrovnik. Manuscript available on the author’s webpage (2012)Google Scholar
  14. 14.
    Melliès, P.-A.: Local states in string diagrams. In: Dowek, G. (ed.) RTA-TLCA 2014. LNCS, vol. 8560, pp. 334–348. Springer, Heidelberg (2014)Google Scholar
  15. 15.
    Melliés, P.-A.: The parametric continuation monad. Festschrift in honor of Corrado Böhm for his 90th birthday. Mathematical Structures in Computer Science (2016)Google Scholar
  16. 16.
    Milius, S., Pattinson, D., Schröder, L.: Generic trace semantics and graded monads. Calco (2015)Google Scholar
  17. 17.
    Petricek, T., Orchard, D., Mycroft, A.: Coeffects: unified static analysis of context-dependence. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part II. LNCS, vol. 7966, pp. 385–397. Springer, Heidelberg (2013)Google Scholar
  18. 18.
    Plotkin, G., Power, J.: Computational effects determine monads. In: Proceedings of FoSSaCS, Grenoble (2002)Google Scholar
  19. 19.
    Smirnov, A.: Graded monads and rings of polynomials. J. Math. Sci. 151(3), 3032–3051 (2008)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Street, R.: Two constructions on lax functors. Cahiers de topologie et géométrie différentielle 13, 217–264 (1972)MathSciNetMATHGoogle Scholar
  21. 21.
    Street, R.: The formal theory of monads. J. Pure Appl. Algebra 2(2), 149–168 (1972)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Soichiro Fujii
    • 1
  • Shin-ya Katsumata
    • 2
  • Paul-André Melliès
    • 3
  1. 1.Department of Computer ScienceThe University of TokyoTokyoJapan
  2. 2.RIMSKyoto UniversityKyotoJapan
  3. 3.Laboratoire PPS, CNRSUniv. Paris DiderotParisFrance

Personalised recommendations