Advertisement

Unary Resolution: Characterizing Ptime

  • Clément Aubert
  • Marc Bagnol
  • Thomas Seiller
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9634)

Abstract

We give a characterization of deterministic polynomial time computation based on an algebraic structure called the resolution semiring, whose elements can be understood as logic programs or sets of rewriting rules over first-order terms. This construction stems from an interactive interpretation of the cut-elimination procedure of linear logic known as the geometry of interaction.

This framework is restricted to terms (logic programs, rewriting rules) using only unary symbols, and this restriction is shown to be complete for polynomial time computation by encoding pushdown automata. Soundness w.r.t. Ptime is proven thanks to a saturation method similar to the one used for pushdown systems and inspired by the memoization technique.

A Ptime-completeness result for a class of logic programming queries that uses only unary function symbols comes as a direct consequence.

Keywords

Implicit complexity Unary queries Logic programming Geometry of interaction Proof theory Pushdown automata Saturation Memoization 

References

  1. 1.
    Aho, A.V., Hopcroft, J.E., Ullman, J.D.: Time and tape complexity of pushdown automaton languages. Inform. Control 13(3), 186–206 (1968)CrossRefzbMATHGoogle Scholar
  2. 2.
    Aubert, C., Bagnol, M.: Unification and logarithmic space. In: Dowek, G. (ed.) RTA-TLCA 2014. LNCS, vol. 8560, pp. 77–92. Springer, Heidelberg (2014)Google Scholar
  3. 3.
    Aubert, C., Bagnol, M., Pistone, P., Seiller, T.: Logic programming and logarithmic space. In: Garrigue, J. (ed.) APLAS 2014. LNCS, vol. 8858, pp. 39–57. Springer, Heidelberg (2014)Google Scholar
  4. 4.
    Aubert, C., Bagnol, M., Seiller, T.: Memoization for unary logic programming: Characterizing ptime. Research Report RR-8796, INRIA (2015). https://hal.archives-ouvertes.fr/hal-01107377
  5. 5.
    Aubert, C., Seiller, T.: Characterizing co-NL by a group action. In: MSCS (FirstView), pp. 1–33, December 2014Google Scholar
  6. 6.
    Aubert, C., Seiller, T.: Logarithmic space and permutations. Inf. Comput. Spec. Issue Implicit Comput. Complex. (2015). doi:  10.1016/j.ic.2014.01.018
  7. 7.
    Baader, F., Nipkow, T.: Term rewriting and all that. CUP, Cambridge (1998)CrossRefzbMATHGoogle Scholar
  8. 8.
    Bagnol, M.: On the Resolution Semiring. Ph.D. thesis, Aix-Marseille Université - Institut de Mathématiques de Marseille (2014). https://hal.archives-ouvertes.fr/tel-01215334
  9. 9.
    Baillot, P., Mazza, D.: Linear logic by levels and bounded time complexity. Theoret. Comput. Sci. 411(2), 470–503 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Baillot, P., Pedicini, M.: Elementary complexity and geometry of interaction. Fund. Inform. 45(1–2), 1–31 (2001)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Baillot, P., Terui, K.: Light types for polynomial time computation in lambda-calculus. In: LICS, pp. 266–275. IEEE Computer Society (2004)Google Scholar
  12. 12.
    Bellantoni, S.J., Cook, S.A.: A new recursion-theoretic characterization of the polytime functions. Comput. Complex. 2, 97–110 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Carayol, A., Hague, M.: Saturation algorithms for model-checking pushdown systems. In: Ésik, Z., Fülöp, Z. (eds.), Proceedings 14th International Conference on Automata and Formal Languages, AFL 2014, Szeged, Hungary, May 27–29, 2014. EPTCS, vol. 151, pp. 1–24 (2014)Google Scholar
  14. 14.
    Caucal, D.: Récritures suffixes de mots. Research Report RR-0871, INRIA (1988). https://hal.inria.fr/inria-00075683
  15. 15.
    Caucal, D.: On the regular structure of prefix rewriting. In: Arnold, A. (ed.) CAAP ’90. LNCS, vol. 431, pp. 87–102. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  16. 16.
    Cook, S.A.: Characterizations of pushdown machines in terms of time-bounded computers. J. ACM 18(1), 4–18 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Cook, S.A.: Linear time simulation of deterministic two-way pushdown automata. In: IFIP Congress (1), pp. 75–80. North-Holland (1971)Google Scholar
  18. 18.
    Dal Lago, U.: A short introduction to implicit computational complexity. In: Bezhanishvili, N., Goranko, V. (eds.) ESSLLI 2010 and ESSLLI 2011. LNCS, vol. 7388, pp. 89–109. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  19. 19.
    Dal Lago, U., Schöpp, U.: Functional programming in sublinear space. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 205–225. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  20. 20.
    Danos, V.: La Logique Linéaire appliquée á l’étude de divers processus de normalisation (principalement du \(\lambda \)-calcul). Ph.D. thesis, Universit Paris VII (1990)Google Scholar
  21. 21.
    Danos, V., Joinet, J.B.: Linear logic and elementary time. Inf. Comput. 183(1), 123–137 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power of logic programming. ACM Comput. Surv. 33(3), 374–425 (2001)CrossRefGoogle Scholar
  23. 23.
    Dwork, C., Kanellakis, P.C., Mitchell, J.C.: On the sequential nature of unification. J. Log. Program. 1(1), 35–50 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Gaboardi, M., Marion, J.Y., Rocca Della Rocca, S.: An implicit characterization of pspace. ACM Trans. Comput. Log. 13(2), 18:1–18:36 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Girard, J.Y.: Linear logic. Theoret. Comput. Sci. 50(1), 1–101 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Girard, J.Y.: Geometry of interaction 1: Interpretation of system F. Stud. Logic Found. Math. 127, 221–260 (1989)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Girard, J.Y.: Towards a geometry of interaction. In: Gray, J.W., Scedrov, A. (eds.) Proceedings of the AMS Conference on Categories, Logic and Computer Science. Categories in Computer Science and Logic, vol. 92, pp. 69–108. AMS (1989)Google Scholar
  28. 28.
    Girard, J.Y.: Geometry of interaction III: accommodating the additives. In: Girard, J.Y., Lafont, Y., Regnier, L. (eds.) Advances in Linear Logic, pp. 329–389. No. 222 in London Mathematical Society Lecture Note Series, CUP, June 1995Google Scholar
  29. 29.
    Girard, J.Y.: Light linear logic. In: Leivant, D. (ed.) Logic and Computational Complexity. LNCS, vol. 960, pp. 145–176. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  30. 30.
    Girard, J.Y.: Geometry of interaction V: Logic in the hyperfinite factor. Theoret. Comput. Sci. 412(20), 1860–1883 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Girard, J.Y.: Normativity in logic. In: Dybjer, P., Lindström, S., Palmgren, E., Sundholm, G. (eds.) Epistemology versus Ontology. LEUS, vol. 27, pp. 243–263. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  32. 32.
    Glück, R.: Simulation of two-way pushdown automata revisited. In: Banerjee, A., Danvy, O., Doh, K.G., Hatcliff, J. (eds.) Festschrift for Dave Schmidt. EPTCS, vol. 129, pp. 250–258 (2013)Google Scholar
  33. 33.
    Grellois, C., Melliés, P.A.: Relational semantics of linear logic and higher-order model checking. In: Kreutzer, S. (ed.) CSL. LIPIcs, vol. 41, pp. 260–276. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2015). http://www.dagstuhl.de/dagpub/978-3-939897-90-3
  34. 34.
    Huet, G., Lankford, D.: On the uniform halting problem for term rewriting systems. Research Report RR-283, INRIA (1978). http://www.ens-lyon.fr/LIP/REWRITING/TERMINATION/Huet_Lankford.pdf
  35. 35.
    Ladermann, M., Petersen, H.: Notes on looping deterministic two-way pushdown automata. Inf. Process. Lett. 49(3), 123–127 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Lafont, Y.: Soft linear logic and polynomial time. Theoret. Comput. Sci. 318(1), 163–180 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Leivant, D.: Stratified functional programs and computational complexity. In: Van Deusen, M.S., Lang, B. (eds.) POPL, pp. 325–333. ACM Press (1993)Google Scholar
  38. 38.
    Neergaard, P.M.: A functional language for logarithmic space. In: Chin, W.-N. (ed.) APLAS 2004. LNCS, vol. 3302, pp. 311–326. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  39. 39.
    Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. ACM 12(1), 23–41 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Seiller, T.: Logique dans le facteur hyperfini : géometrie de l’interaction et complexité. Ph.D. thesis, Université de la Méditerranée (2012), https://hal.archives-ouvertes.fr/tel-00768403
  41. 41.
    Seiller, T.: A correspondence between maximal abelian sub-algebras and linear logic fragments. ArXiv preprint abs/1408.2125, to appear in MSCS (2014)
  42. 42.
    Seiller, T.: Interaction graphs: Graphings. ArXiv preprint abs/1405.6331 (2014)
  43. 43.
    Wagner, K.W., Wechsung, G.: Computational Complexity, Mathematics and its Applications. Springer, Heidelberg (1986)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Computer ScienceAppalachian State UniversityBooneUSA
  2. 2.Department of Mathematics and StatisticsUniversity of OttawaOttawaCanada
  3. 3.Department of Computer ScienceUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations