Advertisement

Metric Temporal Logic with Counting

  • Shankara Narayanan Krishna
  • Khushraj Madnani
  • Paritosh K. Pandya
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9634)

Abstract

Ability to count number of occurrences of events within a specified time interval is very useful in specification of resource bounded real time computation.

References

  1. 1.
    Etessami, K., Wilke, T.: An until hierarchy for temporal logic. In: LICS, pp. 108–117 (1996)Google Scholar
  2. 2.
    Hirshfeld, Y., Rabinovich, A.: An expressive temporal logic for real time. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 492–504. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Hunter, P.: When is metric temporal logic expressively complete? In: CSL, pp. 380–394 (2013)Google Scholar
  4. 4.
    Krishna, S.N., Madnani, K., Pandya, P.K.: Partially punctual metric temporal logic is decidable. In: TIME, pp. 174–183 (2014)Google Scholar
  5. 5.
    Kini, D.R., Krishna, S.N., Pandya, P.K.: On construction of safety signal automata for \(MITL[\,\cal U\mathit{,\,\cal S}]\) using temporal projections. In: Fahrenberg, U., Tripakis, S. (eds.) FORMATS 2011. LNCS, vol. 6919, pp. 225–239. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Krishna, S.N., Madnani, K., Pandya, P.K.: Metric temporal logic with counting (2015). CoRR, abs/1512.09032Google Scholar
  7. 7.
    Laroussinie, F., Meyer, A., Petonnet, E.: Counting LTL. In: TIME, pp. 51–58 (2010)Google Scholar
  8. 8.
    Madnani, K., Krishna, S.N., Pandya, P.K.: Partially punctual metric temporal logic is decidable (2014). http://arxiv.org/abs/1404.6965
  9. 9.
    Ouaknine, J., Worrell, J.: On the decidability of metric temporal logic. In: LICS, pp. 188–197 (2005)Google Scholar
  10. 10.
    Pandya, P.K., Shah, S.S.: On expressive powers of timed logics: comparing boundedness, non-punctuality, and deterministic freezing. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 60–75. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Prabhakar, P., D’Souza, D.: On the expressiveness of MTL with past operators. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 322–336. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Rabinovich, A.: Complexity of metric temporal logics with counting and the Pnueli modalities. Theoret. Comput. Sci. 411(22–24), 2331–2342 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Raskin, J.F.: Logics, automata and classical theories for deciding real time. Ph.D. thesis, Universite de Namur (1999)Google Scholar
  14. 14.
    Straubing, H.: Finite Automata, Formal Logic and Circuit Complexity. Birkhauser, Boston (1994)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Shankara Narayanan Krishna
    • 1
  • Khushraj Madnani
    • 1
  • Paritosh K. Pandya
    • 2
  1. 1.Department of Computer Science and EngineeringIIT BombayMumbaiIndia
  2. 2.School of Technology and Computer ScienceTata Institute of Fundamental ResearchMumbaiIndia

Personalised recommendations