Advertisement

Light Scattering and Thermal Emission by Primitive Dust Particles in Planetary Systems

  • Hiroshi KimuraEmail author
  • Ludmilla Kolokolova
  • Aigen Li
  • Jérémy Lebreton
Chapter
Part of the Springer Praxis Books book series (PRAXIS)

Abstract

Stardust grains are tiny solid samples of stars, newly condensed in an expanding atmosphere of a dying star and injected into interstellar space by stellar wind and radiation pressure.

Keywords

Dust Particle Planetary System Spectral Energy Distribution Protoplanetary Disk Discrete Dipole Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We would like to thank anonymous reviewers for constructive comments and helpful suggestions that greatly improved the manuscript. We are grateful to Yu-lin Xu, Yasuhiko Okada, Ryo Tazaki, Sebastian Wolf, and Bruce T. Draine for useful information. We also express our gratitude to Alexander A. Kokhanovsky who encouraged us to write up a comprehensive review of this subject. H. Kimura is thankful to Grants-in-Aid for Scientific Research (#26400230, #15K05273, #23103004) from the Japan Society of the Promotion of Science.

References

  1. Acke B, Min M, Dominik C, Vandenbussche B, Sibthorpe B, Waelkens C, Olofsson G, Degroote P, Smolders K, Pantin E, Barlow MJ, Blommaert JADL, Brandeker A, De Meester W, Dent WRF, Exter K, Di Francesco J, Fridlund M, Gear WK, Glauser AM, Greaves JS, Harvey PM, Henning T, Hogerheijde MR, Holland WS, Huygen R, Ivison RJ, Jean C, Liseau R, Naylor DA, Pilbratt GL, Polehampton ET, Regibo S, Royer P, Sicilia-Aguilar A, Swinyard BM (2012) Herschel images of Fomalhaut. An extrasolar Kuiper belt at the height of its dynamical activity. Astron Astrophys 540:A125. doi: 10.1051/0004-6361/201118581 CrossRefGoogle Scholar
  2. A’Hearn MF, Belton MJS, Delamere WA, Kissel J, Klaasen KP, McFadden LA, Meech KJ, Melosh HJ, Schultz PH, Sunshine JM, Thomas PC, Veverka J, Yeomans DK, Baca MW, Busko I, Crockett CJ, Collins SM, Desnoyer M, Eberhardy CA, Ernst CM, Farnham TL, Feaga L, Groussin O, Hampton D, Ipatov SI, Li J-Y, Lindler D, Lisse CM, Mastrodemos N, Owen Jr WM, Richardson JE, Wellnitz DD, White RL (2005) Deep Impact: excavating comet Tempel 1. Science 310:258–264. doi: 10.1126/science.1118923 CrossRefGoogle Scholar
  3. Altobelli N, Postberg F, Fiege K, Trieloff M, Kimura H, Sterken VJ, Hsu H-W, Hillier J, Khawaya N, Moragas-Klostermeyer G, Blum J, Burton M, Srama R, Kempf S, Grün E (2016) The Cosmic Dust Analyzer onboard Cassini measures flux and composition of interstellar dust at Saturn. Science, in pressGoogle Scholar
  4. Arakawa M, Saiki T, Wada K, Kadono T, Takagi Y, Shirai K, Okamoto C, Yano H, Hayakawa M, Nakazawa S, Hirata N, Kobayashi M, Michel P, Jutzi M, Imamura H, Ogawa K, Iijima Y, Honda R, Ishibashi K, Hayakawa H, Sawada H (2013) Small Carry-on Impactor (SCI): its scientific purpose, operation, and observation plan in Hayabysa-2 mission. In: 44th Lunar and Planetary Science Conference, p 1904Google Scholar
  5. Artymowicz P, Clampin M (1997) Dust around main-sequence stars: nature or nurture by the interstellar medium? Astrophys J 490:863–878. doi: 10.1086/304889 CrossRefGoogle Scholar
  6. Augereau JC, Lagrange AM, Mouillet D, Papaloizou JCB, Grorod PA (1999) On the HR 4796 A circumstellar disk. Astron Astrophys 348:557–569Google Scholar
  7. Backman DE, Gillett FC, Witteborn FC (1992) Infrared observations and thermal models of the β Pictoris disk. Astrophys J 385:670–679. doi: 10.1086/170973 CrossRefGoogle Scholar
  8. Bemporad A, Poletto G, Raymond JC (2006) Evidence for pyroxene dust grains in C/2001 C2 sungrazing comet. Adv Space Res 38(9):1972–1975. doi: 10.1016/j.asr.2005.10.005 CrossRefGoogle Scholar
  9. Bemporad A, Poletto G, Raymond J, Giordano S (2007) A review of SOHO/UVCS observations of sungrazing comets. Planet Space Sci 55:1021–1030. doi: 10.1016/j.pss.2006.11.013 CrossRefGoogle Scholar
  10. Bertini I, Thomas N, Barbieri C (2007) Modeling of the light scattering properties of cometary dust using fractal aggregates. Astron Astrophys 461:351–364. doi: 10.1051/0004-6361:20065461 CrossRefGoogle Scholar
  11. Biesecker DA, Lamy P, St Cyr OC, Llebaria A, Howard RA (2002) Sungrazing comets discovered with the SOHO/LASCO coronagraphs 1996–1998. Icarus 157:323–348. doi: 10.1006/icar.2002.6827 CrossRefGoogle Scholar
  12. Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley-Interscience, New YorkGoogle Scholar
  13. Bregman JD, Campins H, Witteborn FC, Wooden DH, Rank DM, Allamandola LJ, Cohen M, Tielens AGGM (1987) Airborne and groundbased spectrophotometry of comet P/Halley from 5–13 micrometers. Astron Astrophys 187:616–620Google Scholar
  14. Brownlee DE (1985) Cosmic dust: collection and research. Annu Rev Earth Planet Sci 13:147–173. doi: 10.1146/annurev.ea.13.050185.001051 CrossRefGoogle Scholar
  15. Brownlee DE, Tomandl DA, Hodge PW (1976) Extraterrestrial particles in the stratosphere. In: Elsässer H, Fechtig H (eds) Interplanetary dust and zodiacal light. Springer, Berlin, pp 279–283CrossRefGoogle Scholar
  16. Brunetto R, Borg J, Dartois E, Rietmeijer FJM, Grossemy F, Sandt C, Le Sergeant d’Hendecourt L, Rotundi A, Dumas P, Djouadi Z, Jamme F (2011) Mid-IR, Far-IR, Raman micro-spectroscopy, and FESEM-EDX study of IDP L2021C5: clues to its origin. Icarus 212:896–910. doi: 10.1016/j.icarus.2011.01.038 CrossRefGoogle Scholar
  17. Campins H, Ryan EV (1989) The identification of crystalline olivine in cometary silicates. Astrophys J 341:1059–1066. doi: 10.1086/167563 CrossRefGoogle Scholar
  18. Chen CH, Li A, Bohac C, Kim KH, Watson DM, Van Cleve J, Houck J, Stapelfeldt K, Werner MW, Rieke G, Su K, Marengo M, Backman D, Beichman C, Fazio G (2007) The dust and gas around β Pictoris. Astrophys J 666:466–474. doi: 10.1086/519989 CrossRefGoogle Scholar
  19. Collinge MJ, Draine BT (2004) Discrete-dipole approximation with polarizabilities that account for both finite wavelength and target geometry. J Opt Soc Am A 21(10):2023–2028. doi: 10.1364/JOSAA.21.002023 CrossRefGoogle Scholar
  20. Day KL (1975) Measured extinction of small olivine spheres. Astrophys J 199:660–662. doi: 10.1086/153734 CrossRefGoogle Scholar
  21. Debes JH, Weinberger AJ, Schneider G (2008) Complex organic materials in the circumstellar disk of HR 4796A. Astrophys J 673:L191–L194. doi: 10.1086/527546 CrossRefGoogle Scholar
  22. Dominik C, Tielens AGGM (1997) The physics of dust coagulation and the structure of dust aggregates in space. Astrophys J 480:647–673. doi: 10.1086/303996 CrossRefGoogle Scholar
  23. Donaldson JK, Lebreton J, Roberge A, Augereau J-C, Krivov AV (2013) Modeling the HD 32297 debris disk with far-infrared Herschel data. Astrophys J 772:17 (10pp). doi: 10.1088/0004-637X/772/1/17 Google Scholar
  24. Dorschner J, Friedemann C, Gürtler J (1978) Laboratory spectra of phyllosilicates and the interstellar 10-micrometer absorption band. Astron Nachr 299:269–282CrossRefGoogle Scholar
  25. Draine BT (1988) The discrete-dipole approximation and its application to interstellar graphite grains. Astrophys J 333:848–872. doi: 10.1086/166795 CrossRefGoogle Scholar
  26. Draine BT, Flatau PJ (1994) Discrete-dipole approximation for scattering calculations. J Opt Soc Am A 11(4):1491–1499. doi: 10.1364/JOSAA.11.001491 CrossRefGoogle Scholar
  27. Draine BT, Goodman J (1993) Beyond Clausius-Mossotti: wave propagation on a polarizable point lattice and the discrete dipole approximation. Astrophys J 405:685–697. doi: 10.1086/172396 CrossRefGoogle Scholar
  28. Fitzgerald MP, Kalas PG, Duchêne G, Pinte C, Graham JR (2007) The AU Microscopii debris disk: multiwavelength imaging and modeling. Astrophys J 670:536–556. doi: 10.1086/521344 CrossRefGoogle Scholar
  29. Fomenkova MN (1999) On the organic refractory component of cometary dust. Space Sci Rev 90:109–114. doi: 10.1023/A:1005237828783 CrossRefGoogle Scholar
  30. Gehrz RD, Ney EP (1992) 0.7- to 23-μm photometric observations of P/Halley 1986 III and six recent bright comets. Icarus 100:162–186. doi: 10.1016/0019-1035(92)90027-5 CrossRefGoogle Scholar
  31. Golimowski DA, Ardila DR, Krist JE, Clampin M, Ford HC, Illingworth GD, Bartko F, Benítez N, Blakeslee JP, Bouwens RJ, Bradley LD, Broadhurst TJ, Brown RA, Burrows CJ, Cheng ES, Cross NJG, Demarco R, Feldman PD, Franx M, Goto T, Gronwall C, Hartig GF, Holden BP, Homeier NL, Infante L, Jee MJ, Kimble RA, Lesser MP, Martel AR, Mei S, Menanteau F, Meurer GR, Miley GK, Motta V, Postman M, Rosati P, Sirianni M, Sparks WB, Tran HD, Tsvetanov ZI, White RL, Zheng W, Zirm AW (2006) Hubble Space Telescope ACS multiband coronagraphic imaging of the debris disk around β Pictoris. Astron J 131:3109–3130. doi: 10.1086/503801 CrossRefGoogle Scholar
  32. Golimowski DA, Krist JE, Stapelfeldt KR, Chen CH, Ardila DR, Bryden G, Clampin M, Ford HC, Illingworth GD, Plavchan P, Rieke GH, Su KYL (2011) Hubble and Spitzer Space Telescope observations of the debris disk around the nearby K dwarf HD 92945. Astron J 142:30 (16pp). doi: 10.1088/0004-6256/142/1/30 Google Scholar
  33. Graham JR, Kalas PG, Matthews BC (2007) The signature of primordial grain growth in the polarized light of the AU Microscopii debris disk. Astrophys J 654:595–605. doi: 10.1086/509318 CrossRefGoogle Scholar
  34. Greenberg JM (1984) Evolution of interstellar grains. In: Wolstencroft RD, Greenberg JM (eds) Proceedings of the workshop on laboratory and observational infrared spectra of interstellar dust. Royal Observatory, Edinburgh, pp 1–25Google Scholar
  35. Greenberg JM, Hage JI (1990) From interstellar dust to comets: a unification of observational constraints. Astrophys J 361:260–274. doi: 10.1086/169191 CrossRefGoogle Scholar
  36. Greenberg JM, Li A (1998) From interstellar dust to comets: the extended CO source in comet Halley. Astron Astrophys 332:374–384Google Scholar
  37. Grigorieva A, Artymowicz P, Thébault P (2007) Collisional dust avalanches in debris discs. Astron Astrophys 461:537–549. doi: 10.1051/0004-6361:20065210 CrossRefGoogle Scholar
  38. Grossman L, Steele IM (1976) Amoeboid olivine aggregates in the Allende meteorite. Geochim Cosmochim Acta 40:149–155. doi: 10.1016/0016-7037(76)90172-1 CrossRefGoogle Scholar
  39. Grün E, Zook HA, Fechtig H, Giese RH (1985) Collisional balance of the meteoritic complex. Icarus 62:244–272. doi: 10.1016/0019-1035(85)90121-6 CrossRefGoogle Scholar
  40. Gustafson BÅS, Kolokolova L (1999) A systematic study of light scattering by aggregate particles using the microwave analog technique: angular and wavelength dependence of intensity and polarization. J Geophys Res 104:31711–31720. doi: 10.1029/1999JD900327 CrossRefGoogle Scholar
  41. Gutkowicz-Krusin D, Draine BT (2004) Propagation of electromagnetic waves on a rectangular lattice of polarizable points. http://arxiv.org/abs/astro-ph/0403082
  42. Hage JI, Greenberg JM (1990) A model for the optical properties of porous grains. Astrophys J 361:251–259. doi: 10.1086/169190 CrossRefGoogle Scholar
  43. Hanner MS (1980) On the albedo of the interplanetary dust. Icarus 43:373–380. doi: 10.1016/0019-1035(80)90181-5 CrossRefGoogle Scholar
  44. Hanner MS, Giese RH, Weiss K, Zerull R (1981) On the definition of albedo and application to irregular particles. Astron Astrophys 104:42–46Google Scholar
  45. Hardy A, Caceres C, Schreiber MR, Cieza L, Alexander RD, Canovas H, Williams JP, Wahhaj Z, Menard F (2015) Probing the final stages of protoplanetary disk evolution with ALMA. Astron Astrophys 583:A66. doi: 10.1051/0004-6361/201526504 CrossRefGoogle Scholar
  46. Harker DE, Woodward CE, Wooden DH, Fisher RS, Trujillo CA (2007) Gemini-N mid-IR observations of the dust properties of the ejecta excavated from comet 9P/Tempel 1 during Deep Impact. Icarus 190:432–453. doi: 10.1016/j.icarus.2007.03.008 CrossRefGoogle Scholar
  47. Henyey LG, Greenstein JL (1941) Diffuse radiation in the galaxy. Astrophys J 93:70–83. doi: 10.1086/144246 CrossRefGoogle Scholar
  48. Ishiguro M, Yang H, Usui F, Pyo J, Ueno M, Ootsubo T, Kwon SM, Mukai T (2013) High-resolution imaging of the Gegenschein and the geometric albedo of interplanetary dust. Astrophys J 767:75 (13pp). doi: 10.1088/0004-637X/767/1/75 Google Scholar
  49. Ishimoto H, Mann I (1999) Modeling the particle mass distribution within 1 AU of the Sun. Planet Space Sci 47:225–232. doi: 10.1016/S0032-0633(98)00083-X CrossRefGoogle Scholar
  50. Jenniskens P (1993) Optical constants of organic refractory residue. Astron Astrophys 274:653–661Google Scholar
  51. Jenniskens P, Baratta GA, Kouchi A, de Groot MS, Greenberg JM, Strazzulla G (1993) Carbon dust formation on interstellar grains. Astron Astrophys 273:583–600Google Scholar
  52. Jessberger EK (1999) Rocky cometary particulates: their elemental, isotopic and mineralogical ingredients. Space Sci Rev 90:91–97. doi: 10.1023/A:1005233727874 CrossRefGoogle Scholar
  53. Jessberger EK, Christoforidis A, Kissel J (1988) Aspects of the major element composition of Halley’s dust. Nature 332:691–695. doi: 10.1038/332691a0 CrossRefGoogle Scholar
  54. Keller LP, Messenger S (2011) On the origins of GEMS grains. Geochim Cosmochim Acta 75:5336–5365. doi: 10.1016/j.gca.2011.06.040 CrossRefGoogle Scholar
  55. Kimura H (2001) Light-scattering properties of fractal aggregates: numerical calculations by a superposition technique and the discrete-dipole approximation. J Quant Spectrosc Radiat Transfer 70:581–594. doi: 10.1016/S0022-4073(01)00031-0 CrossRefGoogle Scholar
  56. Kimura H (2013) The reincarnation of interstellar dust: the importance of organic refractory material in infrared spectra of cometary comae and circumstellar disks. Astrophys J 775:L18 (5pp). doi: 10.1088/2041-8205/775/1/L18 Google Scholar
  57. Kimura H (2014) The organic-rich carbonaceous component of dust aggregates in circumstellar disks: effects of its carbonization on infrared spectral features of its magnesium-rich olivine counterpart. Icarus 232:133–140. doi: 10.1016/j.icarus.2014.01.009 CrossRefGoogle Scholar
  58. Kimura H, Mann I (1998) Radiation pressure cross section for fluffy aggregates. J Quant Spectrosc Radiat Transfer 60:425–438. doi: 10.1016/S0022-4073(98)00017-X CrossRefGoogle Scholar
  59. Kimura H, Mann I (1999a) Radiation pressure on porous micrometeoroids. In: Baggaley WJ, Porubčan V (eds) Meteoroids 1998. Astronomical Institute of the Slovak Academy of Sciences, Bratislava, pp 283–286Google Scholar
  60. Kimura H, Mann I (1999b) Radiation pressure on dust aggregates in circumstellar disks. Phys Chem Earth C Solar Terr Planet Sci 24(5):561–566. doi: 10.1016/S1464-1917(99)00092-6 Google Scholar
  61. Kimura H, Mann I (2004) Light scattering by large clusters of dipoles as an analog for cometary dust aggregates. J Quant Spectrosc Radiat Transfer 89:155–164. doi: 10.1016/j.jqsrt.2004.05.019 CrossRefGoogle Scholar
  62. Kimura H, Ishimoto H, Mukai T (1997) A study on solar dust ring formation based on fractal dust models. Astron Astrophys 326:263–270Google Scholar
  63. Kimura H, Okamoto H, Mukai T (2002a) Radiation pressure and the Poynting-Robertson effect for fluffy dust particles. Icarus 157:349–361. doi: 10.1006/icar.2002.6849 CrossRefGoogle Scholar
  64. Kimura H, Mann I, Biesecker DA, Jessberger EK (2002b) Dust grains in the comae and tails of sungrazing comets: modeling of their mineralogical and morphological properties. Icarus 159:529–541. doi: 10.1006/icar.2002.6940 CrossRefGoogle Scholar
  65. Kimura H, Mann I, Jessberger EK (2003a) Elemental abundances and mass densities of dust and gas in the Local Interstellar Cloud. Astrophys J 582:846–858. doi: 10.1086/344691 CrossRefGoogle Scholar
  66. Kimura H, Mann I, Jessberger EK (2003b) Composition, structure, and size distribution of dust in the Local Interstellar Cloud. Astrophys J 583:314–321. doi: 10.1086/345102 CrossRefGoogle Scholar
  67. Kimura H, Kolokolova L, Mann I (2003c) Optical properties of cometary dust. Astron Astrophys 407:L5–L8. doi: 10.1051/0004-6361:20030967 CrossRefGoogle Scholar
  68. Kimura H, Kolokolova L, Mann I (2006) Light scattering by cometary dust numerically simulated with aggregate particles consisting of identical spheres. Astron Astrophys 449:1243–1254. doi: 10.1051/0004-6361:20041783 CrossRefGoogle Scholar
  69. Kimura H, Chigai T, Yamamoto T (2008) Mid-infrared spectra of cometary dust: the evasion of its silicate mineralogy. Astron Astrophys 482:305–307. doi: 10.1051/0004-6361:20078778 CrossRefGoogle Scholar
  70. Kimura H, Chigai T, Yamamoto T (2009) Infrared spectra of dust aggregates in cometary comae: calculation with olivine formed by exothermic chemical reactions. Astrophys J 690:1590–1596. doi: 10.1088/0004-637X/690/2/1590 CrossRefGoogle Scholar
  71. Kimura H, Senshu H, Wada K (2014) Electrostatic lofting of dust aggregates near the terminator of airless bodies and its implication for the formation of exozodiacal disks. Planet Space Sci 100:64–72. doi: 10.1016/j.pss.2014.03.017 CrossRefGoogle Scholar
  72. Kirchschlager F, Wolf S (2013) Porous dust grains in debris disks. Astron Astrophys 552:A54. doi: 10.1051/0004-6361/201220486 CrossRefGoogle Scholar
  73. Knacke RF, Fajardo-Acosta SB, Telesco CM, Hackwell JA, Lynch DK, Russell RW (1993) The silicates in the disk of β Pictoris. Astrophys J 418:440–450. doi: 10.1086/173405 CrossRefGoogle Scholar
  74. Kobayashi H, Kimura H, Yamamoto S (2013) Dust mantle of comet 9P/Tempel 1: dynamical constraints on physical properties. Astron Astrophys 550:A72. doi: 10.1051/0004-6361/201220464 CrossRefGoogle Scholar
  75. Köhler M, Minato T, Kimura H, Mann I (2007) Radiation pressure force acting on cometary aggregates. Adv Space Res 40(2):266–271. doi: 10.1016/j.asr.2007.05.044 CrossRefGoogle Scholar
  76. Köhler M, Mann I, Li A (2008) Complex organic materials in the HR 4796A disk? Astrophys J 686:L95–L98. doi: 10.1086/592961 CrossRefGoogle Scholar
  77. Kolokolova L, Kimura H (2010a) Comet dust as a mixture of aggregates and solid particles: model consistent with ground-based and space-mission results. Earth Planets Space 62:17–21. doi: 10.5047/eps.2008.12.001 CrossRefGoogle Scholar
  78. Kolokolova L, Kimura H (2010b) Effects of electromagnetic interaction in the polarization of light scattered by cometary and other types of cosmic dust. Astron Astrophys 513:A40. doi: 10.1051/0004-6361/200913681 CrossRefGoogle Scholar
  79. Kolokolova L, Mackowski D (2012) Polarization of light scattered by large aggregates. J Quant Spectrosc Radiat Transfer 113:2567–2572. doi: 10.1016/j.jqsrt.2012.02.002 CrossRefGoogle Scholar
  80. Kolokolova L, Kimura H, Mann I (2005) Characterization of dust particles using photopolarimetric data: example of cometary dust. In: Videen G, Yatskiv Y, Mishchenko M (eds) Photopolarimetry in remote sensing. Kluwer Academic Publishers, Dordrecht, pp 431–454. doi: 10.1007/1-4020-2368-5_20
  81. Kolokolova L, Kimura H, Kiselev N, Rosenbush V (2007) Two different evolutionary types of comets proved by polarimetric and infrared properties of their dust. Astron Astrophys 463:1189–1196. doi: 10.1051/0004-6361:20065069 CrossRefGoogle Scholar
  82. Kozasa T, Blum J, Mukai T (1992) Optical properties of dust aggregates. I. wavelength dependence. Astron Astrophys 263:423–432Google Scholar
  83. Kozasa T, Blum J, Okamoto H, Mukai T (1993) Optical properties of dust aggregates. II. angular dependence of scattered light. Astron Astrophys 276:278–288Google Scholar
  84. Krist JE, Ardila DR, Golimowski DA, Clampin M, Ford HC, Illingworth GD, Hartig GF, Bartko F, Benítez N, Blakeslee JP, Bouwens RJ, Bradley LD, Broadhurst TJ, Brown RA, Burrows CJ, Cheng ES, Cross NJG, Demarco R, Feldman PD, Franx M, Goto T, Gronwall C, Holden B, Homeier N, Infante L, Kimble RA, Lesser MP, Martel AR, Mei S, Menanteau F, Meurer GR, Miley GK, Motta V, Postman M, Rosati P, Sirianni M, Sparks WB, Tran HD, Tsvetanov ZI, White RL, Zheng W (2005) Hubble Space Telescope Advanced Camera for surveys coronagraphic imaging of the AU Microscopii debris disk. Astron J 129:1008–1017. doi: 10.1086/426755 Google Scholar
  85. Krist JE, Stapelfeldt KR, Bryden G, Rieke GH, Su KYL, Chen CC, Beichman CA, Hines DC, Rebull LM, Tanner A, Trilling DE, Clampin M, Gáspár A (2010) HST and Spitzer observations of the HD 207129 debris ring. Astron J 140:1051–1061. doi: 10.1088/0004-6256/140/4/1051 CrossRefGoogle Scholar
  86. Krivov AV, Mann I, Krivova NA (2000) Size distributions of dust in circumstellar debris discs. Astron Astrophys 362:1127–1137Google Scholar
  87. Lamy PL, Malburet P, Llebaria A, Koutchmy S (1989) Comet P/Halley at a heliocentric preperihelion distance of 2.6 AU: jet activity and properties of the dust coma. Astron Astrophys 222:316–322Google Scholar
  88. Lasue J, Levasseur-Regourd AC (2006) Porous irregular aggregates of sub-micron sized grains to reproduce cometary dust light scattering observations. J Quant Spectrosc Radiat Transfer 100:220–236. doi: 10.1016/j.jqsrt.2005.11.040 CrossRefGoogle Scholar
  89. Lasue J, Levasseur-Regourd AC, Fray N, Cottin H (2007) Inferring the interplanetary dust properties from remote observations and simulations. Astron Astrophys 473:641–649. doi: 10.1051/0004-6361:20077623 CrossRefGoogle Scholar
  90. Lasue J, Levasseur-Regourd AC, Hadamcik E, Alcouffe G (2009) Cometary dust properties retrieved from polarization observations: application to C/1995 O1 Hale-Bopp and 1P/Halley. Icarus 199:129–144. doi: 10.1016/j.icarus.2008.09.008 CrossRefGoogle Scholar
  91. Lebreton J, Augereau J-C, Thi W-F, Roberge A, Donaldson J, Schneider G, Maddison ST, Ménard F, Riviere-Marichalar P, Mathews GS, Kamp I, Pinte C, Dent WRF, Barrado D, Duchêne G, Gonzalez J-F, Grady CA, Meeus G, Pantin E, Williams JP, Woitke P (2012) An icy Kuiper belt around the young solar-type star HD 181327. Astron Astrophys 539:A17. doi: 10.1051/0004-6361/201117714 CrossRefGoogle Scholar
  92. Lebreton J, Beichman C, Augereau JC (2014) Detailed models of a sample of debris disks: from Herschel, KIN and Spitzer to the JWST. In: Ballet J, Bournaud F, Martins F, Monier R, Reylé C (eds) Proceedings of the annual meeting of the French Society of Astronomy and Astrophysics (SF2A 2014), pp 193–196Google Scholar
  93. Levasseur-Regourd AC, Hadamcik E, Renard JB (1996) Evidence for two classes of comets from their polarimetric properties at large phase angles. Astron Astrophys 313:327–333Google Scholar
  94. Levasseur-Regourd AC, Cabane M, Worms JC, Haudebourg V (1997) Physical properties of dust in the solar system: relevance of a computational approach and of measurements under microgravity conditions. Adv Space Res 20(8):1585–1594. doi: 10.1016/S0273-1177(97)00816-8 CrossRefGoogle Scholar
  95. Levasseur-Regourd AC, Mukai T, Lasue J, Okada Y (2007) Physical properties of cometary and interplanetary dust. Planet Space Sci 55:1010–1020. doi: 10.1016/j.pss.2006.11.014 CrossRefGoogle Scholar
  96. Li A, Greenberg JM (1998) A comet dust model for the β Pictoris disk. Astron Astrophys 331:291–313Google Scholar
  97. Li A, Lunine JI (2003) Modeling the infrared emission from the HR 4796A disk. Astrophys J 590:368–378. doi: 10.1086/374865 CrossRefGoogle Scholar
  98. Li A, Lunine JI, Bendo GJ (2003) Modeling the infrared emission from the ε Eridani disk. Astrophys J 598:L51–L54. doi: 10.1086/380495 CrossRefGoogle Scholar
  99. Lumme K, Penttilä A (2011) Model of light scattering by dust particles in the solar system: applications to cometary comae and planetary regoliths. J Quant Spectrosc Radiat Transfer 112:1658–1670. doi: 10.1016/j.jqsrt.2011.01.016 CrossRefGoogle Scholar
  100. Lumme K, Rahola J, Hovenier JW (1997) Light scattering by dense clusters of spheres. Icarus 126:455–469. doi: 10.1006/icar.1996.5650 CrossRefGoogle Scholar
  101. Mackowski DW (2002) Discrete dipole moment method for calculation of the T matrix for nonspherical particles. J Opt Soc Am A 19(5):881–893. doi: 10.1364/JOSAA.19.000881 CrossRefGoogle Scholar
  102. Mackowski DW, Mishchenko MI (1996) Calculation of the T matrix and the scattering matrix for ensembles of spheres. J Opt Soc Am A 13(11):2266–2278. doi: 10.1364/JOSAA.13.002266 CrossRefGoogle Scholar
  103. Mackowski DW, Mishchenko MI (2011) A multiple sphere T-matrix Fortran code for use on parallel computer clusters. J Quant Spectrosc Radiat Transfer 112:2182–2192. doi: 10.1016/j.jqsrt.2011.02.019 CrossRefGoogle Scholar
  104. Mann I, Okamoto H, Mukai T, Kimura H, Kitada Y (1994) Fractal aggregate analogues for near solar dust properties. Astron Astrophys 291:1011–1018Google Scholar
  105. Mann I, Kimura H, Kolokolova L (2004) A comprehensive model to describe light scattering properties of cometary dust. J Quant Spectrosc Radiat Transfer 89:291–301. doi: 10.1016/j.jqsrt.2004.05.029 CrossRefGoogle Scholar
  106. Mathis JS, Whiffen G (1989) Composite interstellar grains. Astrophys J 341:808–822. doi: 10.1086/167538 CrossRefGoogle Scholar
  107. McDonnell JAM, Alexander WM, Burton WM, Bussoletti E, Evans GC, Evans ST, Firth JG, Grard RJL, Green SF, Grun E, Hanner MS, Hughes DW, Igenbergs E, Kissel J, Kuczera H, Lindblad BA, Langevin Y, Mandeville J-C, Nappo S, Pankiewicz GSA, Perry CH, Schwehm GH, Sekanina Z, Stevenson TJ, Turner RF, Weishaupt U, Wallis MK, Zarnecki JC (1987) The dust distribution within the inner coma of comet P/Halley 1982i: encounter by Giotto’s impact detectors. Astron Astrophys 187:719–741Google Scholar
  108. Meakin P (1984) Effects of cluster trajectories on cluster-cluster aggregation: a comparison of linear and Brownian trajectories in two- and three-dimensional simulations. Phys Rev A 29:997–999. doi: 10.1103/PhysRevA.29.997 CrossRefGoogle Scholar
  109. Meakin P, Donn B (1988) Aerodynamic properties of fractal grains: implications for the primordial solar nebula. Astrophys J 329:L39–L41. doi: 10.1086/185172 CrossRefGoogle Scholar
  110. Minato T, Köhler M, Kimura H, Mann I, Yamamoto T (2006) Momentum transfer to fluffy dust aggregates from stellar winds. Astron Astrophys 452:701–707. doi: 10.1051/0004-6361:20054774 CrossRefGoogle Scholar
  111. Moreno F, Muñoz O, Guirado D, Vilaplana R (2007) Comet dust as a size distribution of irregularly shaped, compact particles. J Quant Spectrosc Radiat Transfer 106:348–359. doi: 10.1016/j.jqsrt.2007.01.023 CrossRefGoogle Scholar
  112. Mukai T, Okada Y (2007) Optical properties of large aggregates. In: Workshop on dust in planetary systems, SP-643. ESA Publications Division, Noordwijk, pp 157–160Google Scholar
  113. Mukai T, Ishimoto H, Kozasa T, Blum J, Greenberg JM (1992) Radiation pressure forces of fluffy porous grains. Astron Astrophys 262:315–320Google Scholar
  114. Nagdimunov L, Kolokolova L, Wolff M, A’Hearn MF, Farnham TL (2014) Properties of comet 9P/Tempel 1 dust immediately following excavation by Deep Impact. Planet Space Sci 100:73–78. doi: 10.1016/j.pss.2014.05.018 CrossRefGoogle Scholar
  115. Nakamura R (1998) Optical properties of dust aggregates in the disk of Beta Pictoris. Earth Planet Space 50:587–593. doi: 10.1186/BF03352152 CrossRefGoogle Scholar
  116. Nakamura R, Okamoto H (1999) Optical properties of fluffy aggregates as analogue of interplanetary dust particles. Adv Space Res 23(7):1209–1212. doi: 10.1016/S0273-1177(99)00185-4 CrossRefGoogle Scholar
  117. Noguchi T, Ohashi N, Tsujimoto S, Mitsunari T, Bradley JP, Nakamura T, Toh S, Stephan T, Iwata N, Imae N (2015) Cometary dust in Antarctic ice and snow: past and present chondritic porous micrometeorites preserved on the Earth’s surface. Earth Planet Sci Lett 410:1–11. doi: 10.1016/j.epsl.2014.11.012 CrossRefGoogle Scholar
  118. Okada Y (2008) Efficient numerical orientation averaging of light scattering properties with a quasi-Monte-Carlo method. J Quant Spectrosc Radiat Transfer 109:1719–1742. doi: 10.1016/j.jqsrt.2008.01.002 CrossRefGoogle Scholar
  119. Okamoto H (1995) Light scattering by clusters: the a1-term method. Opt Rev 2(6):407–412CrossRefGoogle Scholar
  120. Okamoto H, Xu Y-L (1998) Light scattering by irregular interplanetary dust particles. Earth Planet Space 50:577–585. doi: 10.1186/BF03352151 CrossRefGoogle Scholar
  121. Okamoto H, Mukai T, Kozasa T (1994) The 10 μm feature of aggregates in comets. Planet Space Sci 42:643–649. doi: 10.1016/0032-0633(94)90041-8 CrossRefGoogle Scholar
  122. Ossenkopf V (1993) Dust coagulation in dense molecular clouds: the formation of fluffy aggregates. Astron Astrophys 280:617–646Google Scholar
  123. Penttilä A, Lumme K (2011) Optimal cubature on the sphere and other orientation averaging schemes. J Quant Spectrosc Radiat Transfer 112:1741–1746. doi: 10.1016/j.jqsrt.2011.02.001 CrossRefGoogle Scholar
  124. Penttilä A, Zubko E, Lumme K, Muinonen K, Yurkin MA, Draine B, Rahola J, Hoekstra AG, Shkuratov Y (2007) Comparison between discrete dipole implementations and exact techniques. J Quant Spectrosc Radiat Transfer 106:417–436. doi: 10.1016/j.jqsrt.2007.01.026 CrossRefGoogle Scholar
  125. Petrova EV, Tishkovets VP (2011) Light scattering by aggregates of varying porosity and the opposition phenomena observed in the low-albedo particulate media. J Quant Spectrosc Radiat Transfer 112:2226–2233. doi: 10.1016/j.jqsrt.2011.01.011 CrossRefGoogle Scholar
  126. Petrova EV, Jockers K, Kiselev NN (2000) Light scattering by aggregates with sizes comparable to the wavelength: an application to cometary dust. Icarus 148:526–536. doi: 10.1006/icar.2000.6504 CrossRefGoogle Scholar
  127. Petrova EV, Jockers K, Kiselev NN (2001a) Light scattering by aggregate particles comparable in size to wavelength: application to cometary dust. Sol Syst Res 35:57–69. doi: 10.1023/A:1005267824582 CrossRefGoogle Scholar
  128. Petrova EV, Jockers K, Kiselev NN (2001b) A negative branch of polarization for comets and atmosphereless celestial bodies and the light scattering by aggregate particles. Sol Syst Res 35:390–399. doi: 10.1023/A:1012304321440 CrossRefGoogle Scholar
  129. Petrova EV, Tishkovets VP, Jockers K (2004) Polarization of light scattered by solar system bodies and the aggregate model of dust particles. Sol Syst Res 38:309–324. doi: 10.1023/B:SOLS.0000037466.32514.fe CrossRefGoogle Scholar
  130. Pinte C, Ménard F, Duchêne G, Bastien P (2006) Monte Carlo radiative transfer in protoplanetary disks. Astron Astrophys 459:797–804. doi: 10.1051/0004-6361:20053275 CrossRefGoogle Scholar
  131. Purcell EM, Pennypacker CR (1973) Scattering and absorption of light by nonspherical dielectric grains. Astrophys J 186:705–714. doi: 10.1086/152538 CrossRefGoogle Scholar
  132. Robertson HP (1937) Dynamical effects of radiation in the solar system. Mon Not R Astron Soc 97:423–437. doi: 10.1093/mnras/97.6.423 CrossRefGoogle Scholar
  133. Rodigas TJ, Debes JH, Hinz PM, Mamajek EE, Pecaut MJ, Currie T, Bailey V, Defrere D, De Rosa RJ, Hill JM, Leisenring J, Schneider G, Skemer AJ, Skrutskie M, Vaitheeswaran V, Ward-Duong K (2014) Does the debris disk around HD 32297 contain cometary grains? Astrophys J 783:21 (12pp). doi: 10.1088/0004-637X/783/1/21 Google Scholar
  134. Rotundi A, Sierks H, Della Corte V, Fulle M, Gutierrez PJ, Lara L, Barbieri C, Lamy PL, Rodrigo R, Koschny D, Rickman H, Keller HU, López Moreno JJ, Accolla M, Agarwal J, A’Hearn MF, Altobelli N, Angrilli F, Barucci MA, Bertaux J-L, Bertini I, Bodewits D, Bussoletti E, Colangeli L, Cosi M, Cremonese G, Crifo J-F, Da Deppo V, Davidsson B, Debei S, De Cecco M, Esposito F, Ferrari M, Fornasier S, Giovane F, Gustafson B, Green SF, Groussin O, Grün E, Güttler C, Herranz ML, Hviid SF, Ip W, Ivanovski S, Jerónimo JM, Jorda L, Knollenberg J, Kramm R, Kührt E, Küppers M, Lazzarin M, Leese MR, López-Jiménez AC, Lucarelli F, Lowry SC, Marzari F, Epifani EM, McDonnell JAM, Mennella V, Michalik H, Molina A, Morales R, Moreno F, Mottola S, Naletto G, Oklay N, Ortiz JL, Palomba E, Palumbo P, Perrin J-M, Rodríguez J, Sabau L, Snodgrass C, Sordini R, Thomas N, Tubiana C, Vincent J-B, Weissman P, Wenzel K-P, Zakharov V, Zarnecki JC (2015) Dust measurements in the coma of comet 67P/Churyumov-Gerasimenko inbound to the Sun. Science 347: aaa3905. doi: 10.1126/science.aaa3905 Google Scholar
  135. Saija R, Iatì MA, Giusto A, Borghese F, Denti P, Aiello S, Cecchi-Pestellini C (2003) Radiation pressure cross-sections of fluffy interstellar grains. Mon Not R Astron Soc 341:1239–1245. doi: 10.1046/j.1365-8711.2003.06490.x CrossRefGoogle Scholar
  136. Schneider G, Smith BA, Becklin EE, Koerner DW, Meier R, Hines DC, Lowrance PJ, Terrile RJ, Thompson RI, Rieke M (1999) NICMOS imaging of the HR 4796A circumstellar disk. Astrophys J 513:L127–L130. doi: 10.1086/311921 CrossRefGoogle Scholar
  137. Schulz R, Hilchenbach M, Langevin Y, Kissel J, Silen J, Briois C, Engrand C, Hornung K, Baklouti D, Bardyn A, Cottin H, Fischer H, Fray N, Godard M, Lehto H, Le Roy L, Merouane S, Orthous-Daunay F-R, Paquette J, Rynö J, Siljeström S, Stenzel O, Thirkell L, Varmuza K, Zaprudin B (2015) Comet 67P/Churyumov-Gerasimenko sheds dust coat accumulated over the past four years. Nature 518:216–218. doi: 10.1038/nature14159 Google Scholar
  138. Sekanina Z (2000) Solar and Heliospheric Observatory sungrazing comets with prominent tails: evidence on dust-production peculiarities. Astrophys J 545:L69–L72. doi: 10.1086/317336 CrossRefGoogle Scholar
  139. Sekanina Z, Chodas PW (2012) Comet C/2011 W3 (Lovejoy): orbit determination, outbursts, disintegration of nucleus, dust-tail morphology, and relationship to new cluster of bright sungrazers. Astrophys J 757:127 (33pp). doi: 10.1088/0004-637X/757/2/127 Google Scholar
  140. Shalima P, Wada K, Kimura H (2015) Ejecta curtain radiative transfer modeling for probing its geometry and dust optical properties. Planet Space Sci 116:39–47. doi: 10.1016/j.pss.2015.03.017 CrossRefGoogle Scholar
  141. Shen Y, Draine BT, Johnson ET (2009) Modeling porous dust grains with ballistic aggregates. II. light scattering properties. Astrophys J 696:2126–2137. doi: 10.1088/0004-637X/696/2/2126 CrossRefGoogle Scholar
  142. Silsbee K, Draine BT (2016) Radiation pressure on fluffy submicron-sized grains. Astrophys J 818:133 (9pp). doi: 10.3847/0004-637X/818/2/133 Google Scholar
  143. Singham MK, Singham SB, Salzman GC (1986) The scattering matrix for randomly oriented particles. J Chem Phys 85(7):3807–3815. doi: 10.1063/1.450901 CrossRefGoogle Scholar
  144. Tazaki R, Nomura H (2015) Outward motion of porous dust aggregates by stellar radiation pressure in protoplanetary disks. Astrophys J 799:119 (9pp). doi: 10.1088/0004-637X/799/2/119 Google Scholar
  145. Thompson WT (2015) Linear polarization measurements of Comet C/2011 W3 (Lovejoy) from STEREO. Icarus 261:122–132. doi: 10.1016/j.icarus.2015.08.018 CrossRefGoogle Scholar
  146. Tiscareno MS, Mitchell CJ, Murray CD, Di Nino D, Hedman MM, Schmidt J, Burns JA, Cuzzi JN, Porco CC, Beurle K, Evans MW (2013) Observations of ejecta clouds produced by impacts onto Saturn's rings. Science 340:460–464. doi: 10.1126/science.1233524 CrossRefGoogle Scholar
  147. Van de Hulst HC (1957) Light scattering by small particles. Dover, New YorkGoogle Scholar
  148. Videen G, Muinonen K (2015) Light-scattering evolution from particles to regolith. J Quant Spectrosc Radiat Transfer 150:87–94. doi: 10.1016/j.jqsrt.2014.05.019 CrossRefGoogle Scholar
  149. Voshchinnikov NV, Il’in VB, Henning T (2005) Modelling the optical properties of composite and porous interstellar grains. Astron Astrophys 429:371–381. doi: 10.1051/0004-6361:200400081 CrossRefGoogle Scholar
  150. Wada K, Tanaka H, Suyama T, Kimura H, Yamamoto T (2008) Numerical simulation of dust aggregate collisions. II. compression and disruption of three-dimensional aggregates in head-on collisions. Astrophys J 677:1296–1308. doi: 10.1086/529511 CrossRefGoogle Scholar
  151. Weidenschilling SJ (1997) The origin of comets in the solar nebula: a unified model. Icarus 127:290–306. doi: 10.1006/icar.1997.5712 CrossRefGoogle Scholar
  152. Weidenschilling SJ, Donn B, Meakin P (1989) The physics of planetesimal formation. In: Weaver HA, Danly L, Fall S (eds) The formation and evolution of planetary systems. Cambridge University Press, Cambridge, pp 131–150Google Scholar
  153. Weinberg JL, Beeson DE (1976) Polarization reversal in the tail of comet Ikeya-Seki (1965 VIII). Astron Astrophys 48:151–153Google Scholar
  154. West RA (1991) Optical properties of aggregate particles whose outer diameter is comparable to the wavelength. Appl Opt 30(36):5316–5324. doi: 10.1364/AO.30.005316 CrossRefGoogle Scholar
  155. Westphal AJ, Stroud RM, Bechtel HA, Brenker FE, Butterworth AL, Flynn GJ, Frank DR, Gainsforth Z, Hillier JK, Postberg F, Simionovici AS, Sterken VJ, Nittler LR, Allen C, Anderson D, Ansari A, Bajt S, Bastien RK, Bassim N, Bridges J, Brownlee DE, Burchell M, Burghammer M, Changela H, Cloetens P, Davis AM, Doll R, Floss C, Grün E, Heck PR, Hoppe P, Hudson B, Huth J, Kearsley A, King AJ, Lai B, Leitner J, Lemelle L, Leonard A, Leroux H, Lettieri R, Marchant W, Ogliore R, Ong WJ, Price MC, Sandford SA, Sans Tresseras J-A, Schmitz S, Schoonjans T, Schreiber K, Silversmit G, Solé VA, Srama R, Stadermann F, Stephan T, Stodolna J, Sutton S, Trieloff M, Tsou P, Tyliszczak T, Vekemans B, Vincze L, Von Korff J, Wordsworth N, Zevin D, Zolensky ME, 30714 Stardust@home dusters (2014) Evidence for interstellar origin of seven dust particles collected by the Stardust spacecraft. Science 345:786–791. doi: 10.1126/science.1252496 Google Scholar
  156. Wilck M, Mann I (1996) Radiation pressure forces on “typical” interplanetary dust grains. Planet Space Sci 44:493–499. doi: 10.1016/0032-0633(95)00151-4 CrossRefGoogle Scholar
  157. Wolff MJ, Clayton GC, Gibson SJ (1998) Modeling composite and fluffy grains. II. porosity and phase functions. Astrophys J 503:815–830. doi: 10.1086/306029 CrossRefGoogle Scholar
  158. Wooden DH, Harker DE, Woodward CE, Butner HM, Koike C, Witteborn FC, McMurtry CW (1999) Silicate mineralogy of the dust in the inner coma of comet C/1995 01 (Hale-Bopp) pre- and post-perihelion. Astrophys J 517:1034–1058. doi: 10.1086/307206 CrossRefGoogle Scholar
  159. Wooden DH, Woodward CE, Harker DE (2004) Discovery of crystalline silicates in comet C/2001 Q4 (NEAT). Astrophys J 612:L77–L80. doi: 10.1086/424593 CrossRefGoogle Scholar
  160. Wurm G, Blum J (1998) Experiments on preplanetary dust aggregation. Icarus 132:125–136. doi: 10.1006/icar.1998.5891 CrossRefGoogle Scholar
  161. Wyatt Jr SP, Whipple FL (1950) The Poynting-Robertson effect on meteor orbits. Astrophys J 111:134–141. doi: 10.1086/145244 CrossRefGoogle Scholar
  162. Xing Z, Hanner MS (1996) Modelling the temperature of cometary particles. In: Gustafson BÅS, Hanner MS (eds) Physics, chemistry, and dynamics of interplanetary dust. Astronomical Society of the Pacific, San Francisco, pp 437–441Google Scholar
  163. Xing Z, Hanner MS (1997) Light scattering by aggregate particles. Astron Astrophys 324:805–820Google Scholar
  164. Xu Y-L (1995) Electromagnetic scattering by an aggregate of spheres. Appl Opt 34(21):4573–4588. doi: 10.1364/AO.34.004573 CrossRefGoogle Scholar
  165. Xu Y-L (2003) Radiative scattering properties of an ensemble of variously shaped small particles. Phys Rev E 67:046620. doi: 10.1103/PhysRevE.67.046620 CrossRefGoogle Scholar
  166. Xu Y-L, Gustafson BÅS (2001) A generalized multiparticle Mie-solution: further experimental verification. J Quant Spectrosc Radiat Transfer 70:395–419. doi: 10.1016/S0022-4073(01)00019-X CrossRefGoogle Scholar
  167. Xu Y-L, Khlebtsov NG (2003) Orientation-averaged radiative properties of an arbitrary configuration of scatterers. J Quant Spectrosc Radiat Transfer 79–80:1121–1137. doi: 10.1016/S0022-4073(02)00345-X CrossRefGoogle Scholar
  168. Yada T, Uesugi M, Uesugi K, Karouji Y, Suzuki Y, Takeuchi A, Tsuchiyama A, Okada T, Abe M (2014) Three dimensional structures of aggregate-type Itokawa particles. In: 77th annual meeting of the Meteoritical Society, p 5242Google Scholar
  169. Yamamoto S, Kimura H, Zubko E, Kobayashi H, Wada K, Ishiguro M, Matsui T (2008) Comet 9P/Tempel 1: interpretation with the Deep Impact results. Astrophys J 673:L199–L202. doi: 10.1086/527558 CrossRefGoogle Scholar
  170. Yamamoto T, Hasegawa H (1977) Grain formation through nucleation process in astrophysical environment. Progress Theoret Phys 58:816–828. doi: 10.1143/PTP.58.816 CrossRefGoogle Scholar
  171. Yanamandra-Fisher PA, Hanner MS (1999) Optical properties of nonspherical particles of size comparable to the wavelength of light: application to comet dust. Icarus 138:107–128. doi: 10.1006/icar.1998.6066 CrossRefGoogle Scholar
  172. Yurkin MA, Hoekstra AG (2007) The discrete dipole approximation: an overview and recent developments. J Quant Spectrosc Radiat Transfer 106:558–589. doi: 10.1016/j.jqsrt.2007.01.034 CrossRefGoogle Scholar
  173. Yurkin MA, Hoekstra AG (2011) The discrete-dipole-approximation code ADDA: capabilities and known limitations. J Quant Spectrosc Radiat Transfer 112:2234–2247. doi: 10.1016/j.jqsrt.2011.01.031 CrossRefGoogle Scholar
  174. Zubko ES (2012) Light scattering by irregularly shaped particles with sizes comparable to the wavelength. In: Kokhanovsky AA (ed) Light scattering reviews 6. Springer, Berlin, pp 39–74. doi: 10.1007/978-3-642-15531-4_2 Google Scholar
  175. Zubko E (2013) Light scattering by cometary dust: large-particle contribution. Earth Planet Space 65:139–148. doi: 10.5047/eps.2012.02.003 CrossRefGoogle Scholar
  176. Zubko E, Kimura H, Shkuratov Y, Muinonen K, Yamamoto T, Okamoto H, Videen G (2009) Effect of absorption on light scattering by agglomerated debris particles. J Quant Spectrosc Radiat Transfer 110:1741–1749. doi: 10.1016/j.jqsrt.2008.12.006 CrossRefGoogle Scholar
  177. Zubko E, Petrov D, Grynko Y, Shkuratov Y, Okamoto H, Muinonen K, Nousiainen T, Kimura H, Yamamoto T, Videen G (2010) Validity criteria of the discrete dipole approximation. Appl Opt 49(8):1267–1279. doi: 10.1364/AO.49.001267 CrossRefGoogle Scholar
  178. Zubko E, Furusho R, Kawabata K, Yamamoto T, Muinonen K, Videen G (2011) Interpretation of photo-polarimetric observations of comet 17P/Holmes. J Quant Spectrosc Radiat Transfer 112:1848–1863. doi: 10.1016/j.jqsrt.2011.01.020 CrossRefGoogle Scholar
  179. Zubko E, Muinonen K, Shkuratov Y, Hadamcik E, Levasseur-Regourd A-C, Videen G (2012) Evaluating the carbon depletion found by the Stardust mission in comet 81P/Wild 2. Astron Astrophys 544:L8. doi: 10.1051/0004-6361/201218981 CrossRefGoogle Scholar
  180. Zubko E, Muinonen K, Shkuratov Y, Videen G (2013) Characteristics of cometary dust in the innermost coma derived from polarimetry by Giotto. Mon Not R Astron Soc 430:1118–1124. doi: 10.1093/mnras/sts679 CrossRefGoogle Scholar
  181. Zubko E, Muinonen K, Videen G, Kiselev NN (2014) Dust in comet C/1975 V1 (West). Mon Not R Astron Soc 440:2928–2943. doi: 10.1093/mnras/stu480 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Hiroshi Kimura
    • 1
    Email author
  • Ludmilla Kolokolova
    • 2
  • Aigen Li
    • 3
  • Jérémy Lebreton
    • 4
    • 5
  1. 1.Graduate School of ScienceKobe University, C/O CPS (Center for Planetary Science)KobeJapan
  2. 2.Planetary Data System Group, Department of AstronomyUniversity of MarylandCollege ParkUSA
  3. 3.Department of Physics and AstronomyUniversity of MissouriColumbiaUSA
  4. 4.Infrared Processing and Analysis CenterCalifornia Institute of TechnologyPasadenaUSA
  5. 5.NASA Exoplanet Science InstituteCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations