The Discrete Ordinate Algorithm, DISORT for Radiative Transfer

  • Istvan LaszloEmail author
  • Knut Stamnes
  • Warren J. Wiscombe
  • Si-Chee Tsay
Part of the Springer Praxis Books book series (PRAXIS)


The discrete ordinate method for the transfer of monochromatic unpolarized radiation in non-isothermal, vertically inhomogeneous media, as implemented in the computer code Discrete-Ordinate-Method Radiative Transfer, DISORT, is reviewed. Both the theoretical background and its algorithmic implementation are covered. Among others, described are the reduction of the order of the standard algebraic eigenvalue problem to increase efficiency in both the homogenous and particular solutions of the system of coupled ordinary differential equations, application of the scaling transformation to make the solution unconditionally stable for arbitrary large values of optical depth, application of the δ-M method to handle highly anisotropic scattering, the correction of intensities by the Nakajima-Tanaka method, and the implementation of a realistic bidirectional bottom boundary. Numerical considerations that make the implementation robust and efficient are also discussed. Examples of setting up DISORT runs are shown by using test cases with increasing complexity. Brief summaries of the versions released to date are provided, as well.



The authors thank Z. Lin, S. Stamnes, L. Rokke, M. Zhou and H. Liu for their critical reading of and useful comments on an earlier version of the manuscript, and A. Kokhanovsky for inviting us to write this review and for his patience. IL acknowledges the assistance of K. Laszlo with typing in many of the equations.


The contents of this paper are solely the opinions of the authors and do not constitute a statement of policy, decision, or position on behalf of the U.S. National Oceanic and Atmospheric Administration (NOAA) or the U.S. Government.


  1. Anderson E, Bai Z, Bischof C, Demmel I, Dongarra J, Du Croz J, Greenbaum A, Hammarling S, McKenney A, Ostrouchov S, Sorensen D (1999) LAPACK user’s guide, 3rd ed. Society for Industrial and Applied Mathematics, 3600 University City Science Center, Philadelphia, Pennsylvania, ISBN: 978-0-89871-447-0, 19104-2688Google Scholar
  2. Asano S (1975) On the discrete ordinates method for radiative transfer. J. Meteor Soc 53:92–95Google Scholar
  3. Asheim A, Deano A, Huybrechs D, Wang HY (2014) A gaussian quadrature rule for oscillatory integrals on a bounded interval. Discret Contin Dyn Syst 34(3):883–901CrossRefGoogle Scholar
  4. Berk A, Bernstein LS, Anderson GP, Acharya PK, Robertson DC, Chetwynd JH, Adler-Golden SM (1998) MODTRAN cloud and multiple scattering upgrades with application to AVIRIS. Rem Sens Envir 65(3):367–375. doi: 10.1016/S0034-4257(98)00045-5 CrossRefGoogle Scholar
  5. Bohren C, Huffman D (1983) Absorption and scattering of light by small particles. Wiley, New YorkGoogle Scholar
  6. Buras R, Dowling T, Emde C (2011) New secondary-scattering correction in DISORT with increased efficiency for forward scattering. J Quant Spectrosc Radiat Transfer 112(12):2028–2034. doi: 10.1016/j.jqsrt.2011.03.019 CrossRefGoogle Scholar
  7. Chandrasekhar S (1960) Radiative transfer. Dover Publications, New York 393 pGoogle Scholar
  8. Clough SA, Shephard MW, Mlawer EJ, Delamere JS, Iacono MJ, Cady-Pereira K, Boukabara S, Brown PD (2005) Atmospheric radiative transfer modeling: a summary of the AER codes. J Quant Spectrosc Radiat Transfer 91(2):233–244. doi: 10.1016/j.jqsrt.2004.05.058 CrossRefGoogle Scholar
  9. Cowell WR (ed) (1980) Sources and developments of mathematical sofware. Prentice Hall, Englewood CliffsGoogle Scholar
  10. Cox C, Munk W (1954) Measurement of roughness of the sea surface from photographs of the sun’s glitter. J Opt Soc Am 44(11):838–850CrossRefGoogle Scholar
  11. Devaux C, Grandjean P, Ishiguro Y, Siewert CE (1979) On multi-region problems in radiative transfer. Astrophys Space Sci 62:225–233Google Scholar
  12. Ding S, Yang P, Weng F, Liu Q, Han Y, van Delst P, Li J, Baum B (2011) Validation of the community radiative transfer model. J Quant Spectrosc Radiat Transfer 112(6):1050–1064. doi: 10.1016/j.jqsrt.2010.11.009 CrossRefGoogle Scholar
  13. Dongarra J, Moler C, Bunch J, Stewart GW (1979) LINPACK User’s guide. Society for Industrial and Applied Mathematics (SIAM) Press, Philadelphia, pp xx+344. ISBN 978-0-89871-172-1Google Scholar
  14. Filon LNG (1928) On a quadrature formula for trigonometric integrals. Proc Roy Soc Edinburgh Sect A 49:38–47Google Scholar
  15. Garcia RDM, Siewert CE (1985) Benchmark results in radiative transfer. Transp Theory Stat Phys 14:437–483CrossRefGoogle Scholar
  16. Godsalve C (1995) The Inclusion of Reflectances with Preferred Directions in Radiative-Transfer Calculations. J Quant Spectrosc Radiat Transfer 53(3):289–305CrossRefGoogle Scholar
  17. Godsalve C (1996) Accelerating the discrete ordinates method for the solution of the radiative transfer equation for planetary atmospheres. J Quant Spectrosc Radiat Transfer 56(4):609–616. doi: 10.1016/0022-4073(96)00075-1 CrossRefGoogle Scholar
  18. Hapke B (1993) Theory of reflectance and emittance spectroscopy. Cambridge University Press, Cambridge, p 455Google Scholar
  19. Iserles A, Nørsett SP (2004) On quadrature methods for highly oscillatory integrals and their implementation. BIT 44(4):755–772CrossRefGoogle Scholar
  20. Iserles A, Nørsett SP, Olver S (2006) Highly oscillatory quadrature: the story so far. In: de Castro A, Gómez D, Quintela P, Salgado P (eds) Numerical mathematics and advanced applications. Springer, Berlin, pp 97–118CrossRefGoogle Scholar
  21. Jerg M, Trautmann T (2007) One-dimensional solar radiative transfer: Perturbation approach and its application to independent-pixel calculations for realistic cloud fields. J Quant Spectrosc Radiat Transfer 105(1):32–54. doi: 10.1016/j.jqsrt.2006.09.014 CrossRefGoogle Scholar
  22. Key J, Schweiger AJ (1998) Tools for atmospheric radiative transfer: Streamer and FluxNet. Comput Geosci 24(5):443–451CrossRefGoogle Scholar
  23. Kokhanovsky AA et al (2010) Benchmark results in vector atmospheric radiative transfer. J Quant Spectrosc Radiat Transfer 111(12–13):1931–1946CrossRefGoogle Scholar
  24. Kylling A, Stamnes K (1992) Efficient yet accurate solution of the linear transport equation in the presence of internal sources: the exponential-linear-in-depth approximation. J Comp Phys 102:265–276CrossRefGoogle Scholar
  25. Laszlo I, Stamnes K, Wiscombe WJ, Tsay S-C (2010) Towards generalized boundary conditions in DISORT. In: Extended abstracts of the AMS 13th conference on atmospheric radiation, 28 June–2 July 2010, Portland, Oregon.
  26. Levin D (1996) Fast integration of rapidly oscillatory functions. J Comput Appl Math 67(1):95–101CrossRefGoogle Scholar
  27. Lin Z, Stamnes S, Jin Z, Laszlo I, Tsay SC, Wiscombe WJ, Stamnes K (2015) Improved discrete ordinate solutions in the presence of an anisotropically reflecting lower boundary: upgrades of the DISORT computational tool. J Quant Spectrosc Radiat Transfer 157:119–134. doi: 10.1016/j.jqsrt.2015.02.014 CrossRefGoogle Scholar
  28. Lindner B (1988) Ozone on mars: the effects of clouds and airborne dust. Planet Space Sci 36:125–144CrossRefGoogle Scholar
  29. Liou K-N (1973) A numerical experiment on Chandrasekhar’s discrete-ordinate method for radiative transfer: applications to cloudy and hazy atmospheres. J Atmos Sci 30(7):1303–1326CrossRefGoogle Scholar
  30. Nakajima T (2010) A retrospective view on “algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation” by Teruyuki Nakajima and Masayuki Tanaka (1988). J Quant Spectrosc Radiat Transfer 111(11):1651–1652. doi:
  31. Nakajima T, Tanaka M (1986) Matrix formulations for the transfer of solar radiation in a plane-parallel atmosphere. J Quant Spectrosc Radiat Transfer 35:13–21CrossRefGoogle Scholar
  32. Nakajima T, Tanaka M (1988) Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation. J Quant Spectrosc Radiat Transfer 40:51–69CrossRefGoogle Scholar
  33. Ozisik M, Shouman S (1980) Source function expansion method for radiative transfer in a two-layer slab. J Quant Spectrosc Radiat Transfer 24:441–449CrossRefGoogle Scholar
  34. Parlett and Reinsch (1969) Balancing a matrix for calculation of eigenvalues and eigenvectors. Num Math 13:293–304CrossRefGoogle Scholar
  35. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in Fortran: the art of scientific computing, 2nd edn. Cambridge University Press, Cambridge 963 pGoogle Scholar
  36. Rahman H, Pinty B, Verstraete MM (1993) Coupled surface-atmosphere reflectance (CSAR) model 2. Semiempirical surface model usable with NOAA advanced very high resolution radiometer data. J Geophys Res 98(D11):20791–20801CrossRefGoogle Scholar
  37. Ricchiazzi P, Yang S, Gautier C, Sowle D (1998) SBDART: a research and teaching software tool for plane-parallel radiative transfer in the earth’s atmosphere. Bull Am Meteorol Soc 79(10):2101–2114. doi: 10.1175/1520-0477(1998)079<2101:SARATS>2.0.CO;2 CrossRefGoogle Scholar
  38. Roujean J-L, Leroy M, Deschamps P-Y (1992) A bidirectional reflectance model of the Earth’s surface for the correction of remote sensing data. J Geophys Res 97(D18):20455–20468CrossRefGoogle Scholar
  39. Siewert CE (2000) A concise and accurate solution to Chandrasekhar’s basic problem in radiative transfer. J Quant Spectrosc Radiat Transfer 64(2):109–130. doi: 10.1016/S0022-4073(98)00144-7 CrossRefGoogle Scholar
  40. Stamnes K (1982a) On the computation of angular distributions of radiation in planetary atmospheres. J Quant Spectrosc Radiat Transfer 28:47–51CrossRefGoogle Scholar
  41. Stamnes K (1982b) Reflection and transmission by a vertically inhomogeneous planetary atmosphere. Planet Space Sci 30:727–732CrossRefGoogle Scholar
  42. Stamnes K (1986) The theory of multiple scattering of radiation in plane parallel atmospheres. Rev Geophys 24:299–310CrossRefGoogle Scholar
  43. Stamnes K, Conklin P (1984) A new multi-layer discrete ordinate approach to radiative transfer in vertically inhomogeneous atmospheres. J Quant Spectrosc Radiat Transfer 31:273–282CrossRefGoogle Scholar
  44. Stamnes K, Dale H (1981) A new look at the discrete ordinate method for radiative transfer calculation in anisotropically scattering atmospheres. II: Intensity computations. J Atmos Sci 38:2696–2706CrossRefGoogle Scholar
  45. Stamnes K, Swanson RA (1981) A New look at the discrete ordinate method for radiative transfer calculations in anisotropically scattering atmospheres. J Atmos Sci 38(2):387–399. doi: 10.1175/1520-0469(1981)038<0387:ANLATD>2.0.CO;2 CrossRefGoogle Scholar
  46. Stamnes K, Tsay S-C, Wiscombe W, Jayaweera K (1988a) Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl Opt 27:2502–2509CrossRefGoogle Scholar
  47. Stamnes K, Tsay S-C, Nakajima T (1988b) Computation of eigenvalues and eigenvectors for discrete ordinate and matrix operator method radiative transfer. J Quant Spectrosc Radiat Transfer 39:415–419CrossRefGoogle Scholar
  48. Stamnes K, Tsay S-C, Wiscombe WJ, Laszlo I (2000) DISORT, a general-purpose Fortran program for discrete-ordinate-method radiative transfer in scattering and emitting layered media: documentation of methodology. NASA Technical Report, version 1.1Google Scholar
  49. Stamnes S (2011) Calculations of the bidirectional reflectance distribution function (BRDF) of a planetary surface. MS thesis, Department of Physics and Engineering Physics, Stevens Institute of Technology, Hoboken, New Jersey, USAGoogle Scholar
  50. Sweigart A (1970) Radiative transfer in atmospheres scattering according to the Rayleigh phase function with absorption. Astrophys J 22:1–80CrossRefGoogle Scholar
  51. Sykes JB (1951) Approximate integration of the equation of transfer. Mon Not R Astron Soc 111(4):377–386CrossRefGoogle Scholar
  52. Thomas GE, Stamnes K (1999) Radiative transfer in the atmosphere and ocean. Cambridge University Press, CambridgeGoogle Scholar
  53. Tsay S-C (1986) Numerical study of the atmospheric radiative transfer process with application to the Arctic energy balance. Ph.D. thesis, Alaska University, FairbanksGoogle Scholar
  54. Tsay S-C, Stamnes K, Jayaweera K (1989) Radiative energy budget in the cloudy and hazy Arctic. J Atmos Sci 46:1002–1018CrossRefGoogle Scholar
  55. Tsay S-C, Stamnes K, Jayaweera K (1990) Radiative transfer in stratified atmospheres: development and verification of a unified model. J Quant Spectrosc Radiat Transfer 43:133–148CrossRefGoogle Scholar
  56. Tsay S-C, Stamnes K (1992) Ultraviolet radiation in the Arctic: the impact of potential ozone depletions and cloud effects. J Geophy Res 97:7829–7840CrossRefGoogle Scholar
  57. Van de Hulst HC (1980) Multiple light scattering, tables, formulas and applications, vol 1 and 2. Academic Press, New YorkGoogle Scholar
  58. Wilkinson J (1965) The algebraic eigenvalue problem. Clarendon Press, OxfordGoogle Scholar
  59. Wiscombe WJ (1976) Extension of the doubling method to inhomogeneous sources. J Quant Spectrosc Radiat Transfer 16:477–489CrossRefGoogle Scholar
  60. Wiscombe WJ (1977) The delta–M method: rapid yet accurate radiative flux calculations for strongly asymmetric phase functions. J Atmos Sci 34(9):1408–1422CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Istvan Laszlo
    • 1
    Email author
  • Knut Stamnes
    • 2
  • Warren J. Wiscombe
    • 3
  • Si-Chee Tsay
    • 3
  1. 1.Center for Satellite Applications and ResearchNational Oceanic and Atmospheric AdministrationCollege ParkUSA
  2. 2.Department of Physics and Engineering PhysicsStevens Institute of TechnologyHobokenUSA
  3. 3.Climate and Radiation Laboratory, Code 613NASA Goddard Space Flight CenterGreenbeltUSA

Personalised recommendations