Listing Acyclic Orientations of Graphs with Single and Multiple Sources

  • Alessio Conte
  • Roberto Grossi
  • Andrea MarinoEmail author
  • Romeo Rizzi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9644)


We study enumeration problems for the acyclic orientations of an undirected graph with n nodes and m edges, where each edge must be assigned a direction so that the resulting directed graph is acyclic. When the acyclic orientations have single or multiple sources specified as input along with the graph, our algorithm is the first one to provide guaranteed bounds, giving new bounds with a delay of \(O(m\cdot n)\) time per solution and \(O(n^2)\) working space. When no sources are specified, our algorithm improves over previous work by reducing the delay to O(m), and is the first one with linear delay.


  1. 1.
    Alon, N., Tarsi, M.: Colorings and orientations of graphs. Combinatorica 12(2), 125–134 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alon, N., Tuza, Z.: The acyclic orientation game on random graphs. Random Struct. Algorithms 6(2–3), 261–268 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Barbosa, V.C., Szwarcfiter, J.L.: Generating all the acyclic orientations of an undirected graph. Inf. Process. Lett. 72(1), 71–74 (1999)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Benson, B., Chakrabarty, D., Tetali, P.: G-parking functions, acyclic orientations and spanning trees. Discrete Math. 310(8), 1340–1353 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Conte, A., Grossi, R., Marino, A., Rizzi, R.: Enumerating cyclic orientations of a graph. In: IWOCA, 26th International Workshop on Combinatorial Algorithms (2015, to appear)Google Scholar
  6. 6.
    Erdős, P., Katona, G., Társulat, B.J.M.: Theory of Graphs: Proceedings of the Colloquium Held at Tihany, Hungary, September 1966. Academic Press, New York (1968)zbMATHGoogle Scholar
  7. 7.
    Iriarte, B.: Graph orientations and linear extensions. In: DMTCS Proceedings, pp. 945–956 (2014)Google Scholar
  8. 8.
    Johnson, D.S., Papadimitriou, C.H., Yannakakis, M.: On generating all maximal independent sets. Inf. Process. Lett. 27(3), 119–123 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Johnson, R.: Network reliability and acyclic orientations. Networks 14(4), 489–505 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Linial, N.: Hard enumeration problems in geometry and combinatorics. SIAM J. Algebraic Discrete Methods 7(2), 331–335 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Pikhurko, O.: Finding an unknown acyclic orientation of a given graph. Comb. Probab. Comput. 19, 121–131 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Roy, B.: Nombre chromatique et plus longs chemins d’un graphe. Rev. Fr. D’informatique Rech. Opérationnelle 1(5), 129–132 (1967)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Schwikowski, B., Speckenmeyer, E.: On enumerating all minimal solutions of feedback problems. Discrete Appl. Math. 117(1), 253–265 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Squire, M.B.: Generating the acyclic orientations of a graph. J. Algorithms 26(2), 275–290 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Stanley, R.: Acyclic orientations of graphs. In: Gessel, I., Rota, G.-C. (eds.) Classic Papers in Combinatorics. Modern Birkhäuser Classics, pp. 453–460. Birkhäuser, Boston (1987)Google Scholar
  16. 16.
    Stanley, R.P.: What Is Enumerative Combinatorics?. Springer, New York (1986)CrossRefGoogle Scholar
  17. 17.
    Vitaver, L.M.: Determination of minimal coloring of vertices of a graph by means of boolean powers of the incidence matrix. Dokl. Akad. Nauk SSSR 147, 728 (1962)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Alessio Conte
    • 1
  • Roberto Grossi
    • 1
  • Andrea Marino
    • 1
    Email author
  • Romeo Rizzi
    • 2
  1. 1.Erable, InriaUniversità di PisaPisaItaly
  2. 2.Università di VeronaVeronaItaly

Personalised recommendations