Advertisement

Keyword-Based Search Over Databases: A Roadmap for a Reference Architecture Paired with an Evaluation Framework

  • Sonia Bergamaschi
  • Nicola Ferro
  • Francesco Guerra
  • Gianmaria Silvello
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9630)

Abstract

Structured data sources promise to be the next driver of a significant socio-economic impact for both people and companies. Nevertheless, accessing them through formal languages, such as SQL or SPARQL, can become cumbersome and frustrating for end-users. To overcome this issue, keyword search in databases is becoming the technology of choice, even if it suffers from efficiency and effectiveness problems that prevent it from being adopted at Web scale.

In this paper, we motivate the need for a reference architecture for keyword search in databases to favor the development of scalable and effective components, also borrowing methods from neighbor fields, such as information retrieval and natural language processing. Moreover, we point out the need for a companion evaluation framework, able to assess the efficiency and the effectiveness of such new systems and in the light of real and compelling use cases.

Keywords

Search Task Keyword Search User Query Information Retrieval System Keyword Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Aditya, B., Bhalotia, G., Chakrabarti, S., Hulgeri, A., Nakhe, C., Parag, P., Sudarshan, S.: BANKS: browsing and keyword searching in relational databases. In: VLDB, Proceedings of 28th International Conference on Very Large Data Bases, Hong Kong, China, 20–23 August 2002, pp. 1083–1086 (2002)Google Scholar
  2. 2.
    Agosti, M., Berendsen, R., Bogers, T., Braschler, M., Buitelaar, P., Choukri, K., Di Nunzio, G.M., Ferro, N., Forner, P., Hanbury, A., Friberg Heppin, K., Hansen, P., Järvelin, A., Larsen, B., Lupu, M., Masiero, I., Müller, H., Peruzzo, S., Petras, V., Piroi, F., de Rijke, M., Santucci, G., Silvello, G., Toms, E.: PROMISE retreat report - prospects and opportunities for information access evaluation. SIGIR Forum 46(2), 60–84 (2012)CrossRefGoogle Scholar
  3. 3.
    Agosti, M., Ferro, N., Thanos, C.: DESIRE 2011: first international workshop on data infrastructures for supporting information retrieval evaluation. In: Proceedings of the 20th International Conference on Information and Knowledge Management (CIKM), pp. 2631–2632. ACM, New York, USA (2011)Google Scholar
  4. 4.
    Agrawal, S., Chaudhuri, S., Das, G.: Dbxplorer: a system for keyword-based search over relational databases. In: Proceedings of the 18th International Conference on Data Engineering, San Jose, CA, USA, 26 February–1 March 2002, pp. 5–16 (2002)Google Scholar
  5. 5.
    Angelini, M., Ferro, N., Santucci, G., Silvello, G.: VIRTUE: a visual tool for information retrieval performance evaluation and failure analysis. J. Vis. Lang. Comput. (JVLC) 25(4), 394–413 (2014)CrossRefGoogle Scholar
  6. 6.
    Armstrong, T.G., Moffat, A., Webber, W., Zobel, J.: Improvements that don’t add: ad-hoc retrieval results since 1998. In: Proceedings of the 18th International Conference on Information and Knowledge Management (CIKM 2009), pp. 601–610. ACM, New York (1998)Google Scholar
  7. 7.
    Belkin, N.J., Oddy, R., Brooks, H.M.: SK for information retrieval: part I. Background and theory. J. Documentation 38(2), 61–71 (1982)CrossRefGoogle Scholar
  8. 8.
    Bergamaschi, S., Domnori, E., Guerra, F., Trillo-Lado, R., Velegrakis, Y.: Keyword search over relational databases: a metadata approach. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD, Athens, Greece, 12–16 June 2011, pp. 565–576 (2011)Google Scholar
  9. 9.
    Bergamaschi, S., Ferro, N., Guerra, F., Silvello, G., Search, K.: Evaluation over relational databases: an outlook to the future. In: Proceedings of the 7th International Workshop on Ranking in Databases (DBRank) with VLDB, pp. 8:1–8:3 (2013)Google Scholar
  10. 10.
    Bergamaschi, S., Gelati, G., Guerra, F., Vincini, M.: An intelligent data integration approach for collaborative project management in virtual enterprises. World Wide Web 9(1), 35–61 (2006)CrossRefGoogle Scholar
  11. 11.
    Bergamaschi, S., Guerra, F., Interlandi, M., Trillo-Lado, R., Velegrakis, Y.: QUEST: a keyword search system for relational data based on semantic and machine learning techniques. PVLDB 6(12), 1222–1225 (2013)Google Scholar
  12. 12.
    Bergamaschi, S., Guerra, F., Rota, S., Velegrakis, Y.: A hidden markov model approach to keyword-based search over relational databases. In: Proceedings of the 30th International Conference Conceptual Modeling - ER, Brussels, Belgium, 31 October–3 November 2011, pp. 411–420 (2011)Google Scholar
  13. 13.
    Blunschi, L., Jossen, C., Kossmann, D., Mori, M., Stockinger, K.: SODA: generating SQL for business users. PVLDB 5(10), 932–943 (2012)Google Scholar
  14. 14.
    Buettcher, S., Clarke, C.L.A., Cormack, G.V.: Information Retrieval: Implementing and Evaluating Search Engines. The MIT Press, Cambridge (2010)zbMATHGoogle Scholar
  15. 15.
    Cafarella, M.J., Halevy, A.Y., Madhavan, J.: Structured data on the web. Commun. ACM 54(2), 72–79 (2011)CrossRefGoogle Scholar
  16. 16.
    Chaudhuri, S., Das, G.: Keyword querying and ranking in databases. PVLDB 2(2), 1658–1659 (2009)MathSciNetGoogle Scholar
  17. 17.
    Chu, E., Baid, A., Chai, X., Doan, A., Naughton, J.F.: Combining keyword search and forms for ad hoc querying of databases. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD, Providence, Rhode Island, USA, 29 June–2 July 2009, pp. 349–360 (2009)Google Scholar
  18. 18.
    Cleverdon, C.W.: The cranfield tests on index languages devices. In: Spärck Jones, K., Willett, P. (eds.) Readings in Information Retrieval, pp. 47–60. Morgan Kaufmann Publisher Inc., San Francisco (1997)Google Scholar
  19. 19.
    Coffman, J., Weaver, A.C.: An empirical performance evaluation of relational keyword search techniques. IEEE Trans. Knowl. Data Eng. 26(1), 30–42 (2014)CrossRefGoogle Scholar
  20. 20.
    Di Buccio, E., Di Nunzio, G.M., Ferro, N., Harman, D.K., Maistro, M., Silvello, G.: Unfolding off-the-shelf IR systems for reproducibility. In: Proceedings of SIGIR Workshop on Reproducibility, Inexplicability, and Generalizability of Results (RIGOR) (2015)Google Scholar
  21. 21.
    Ding, B., Yu, J.X., Wang, S., Qin, L., Zhang, X., Lin, X.: Finding top-k min-cost connected trees in databases, pp. 836–845 (2007)Google Scholar
  22. 22.
    European Commission. Communication from the commission to the European parliament, the council, the European economic and social committee and the committee of the regions - towards a thriving data-driven economy. COM (2014). 442 final, http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52014DC0442&from=EN
  23. 23.
    Ferrante, M., Ferro, N., Maistro, M.: Injecting user models and time into precision via markov chains. In: Proceedings of the 37th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR), pp. 597–606. ACM, New York (2014)Google Scholar
  24. 24.
    Ferro, N. (ed.): Bridging Between Information Retrieval and Databases - PROMISE Winter School, Revised Tutorial Lectures. Lecture Notes in Computer Science (LNCS), vol. 8173. Springer, Heidelberg (2013)Google Scholar
  25. 25.
    Ferro, N.: CLEF 15th birthday: past, present, and future. SIGIR Forum 48(2), 31–55 (2014)CrossRefGoogle Scholar
  26. 26.
    Ferro, N., Silvello, G.: CLEF \(15^{\rm th}\) birthday: what can we learn from ad hoc retrieval? In: Kanoulas, E., Lupu, M., Clough, P., Sanderson, M., Hall, M., Hanbury, A., Toms, E. (eds.) CLEF 2014. LNCS, vol. 8685, pp. 31–43. Springer, Heidelberg (2014)Google Scholar
  27. 27.
    Ferro, N., Silvello, G.: Rank-biased precision reloaded: reproducibility and generalization. In: Hanbury, A., Kazai, G., Rauber, A., Fuhr, N. (eds.) ECIR 2015. LNCS, vol. 9022, pp. 768–780. Springer, Heidelberg (2015)Google Scholar
  28. 28.
    Ferro, N., Silvello, G., Keskustalo, H., Pirkola, A., Järvelin, K.: The twist measure for IR evaluation: taking user’s effort into account. J. Am. Soc. Inf. Sci. Technol. (JASIST) (in print)Google Scholar
  29. 29.
    Harman, D., Buckley, C.: SIGIR 2004 workshop: RIA and “Where can IR go from here?”. ACM SIGIR Forum 38(2), 45–49 (2004)CrossRefGoogle Scholar
  30. 30.
    Harman, D., Buckley, C.: Overview of the reliable information access workshop. Inf. Retrieval 12(6), 615–641 (2009)CrossRefGoogle Scholar
  31. 31.
    Harman, D.K.: Information Retrieval Evaluation. Morgan and Claypool Publishers, USA (2011)Google Scholar
  32. 32.
    Harman, D.K., Voorhees, E.M. (eds.): TREC. Experiment and Evaluation in Information Retrieval. MIT Press, Cambridge (2005)Google Scholar
  33. 33.
    He, H., Wang, H., Yang, J., Yu, P.S.: BLINKS: ranked keyword searches on graphs. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, Beijing, China, 12–14 June 2007, pp. 305–316 (2007)Google Scholar
  34. 34.
    Hearst, M.A.: Search User Interfaces, 1st edn. Cambridge University Press, New York (2009)CrossRefGoogle Scholar
  35. 35.
    Heath, T., Bizer, C.: Linked Data: Evolving the Web into a Global Data Space. Synthesis Lectures on the Semantic Web. Morgan and Claypool Publishers, USA (2011)Google Scholar
  36. 36.
    Hristidis, V., Papakonstantinou, Y.: DISCOVER: keyword search in relational databases. In: VLDB, Proceedings of 28th International Conference on Very Large Data Bases, 20–23 August 2002, Hong Kong, China, pp. 670–681 (2002)Google Scholar
  37. 37.
    Ingwersen, P., Järvelin, K.: The Turn: Integration of Information Seeking and Retrieval in Context. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  38. 38.
    Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of IR techniques. ACM Trans. Inf. Syst. (TOIS) 20(4), 422–446 (2002)CrossRefGoogle Scholar
  39. 39.
    Kasneci, G., Ramanath, M., Sozio, M., Suchanek, F.M., Weikum, G.: STAR: steiner-tree approximation in relationship graphs. In: Proceedings of the 25th International Conference on Data Engineering, pp. 868–879. IEEE Computer Society (2009)Google Scholar
  40. 40.
    Kekäläinen, J., Järvelin, K.: Using graded relevance assessments in IR evaluation. J. Am. Soc. Inf. Sci. Technol. (JASIST) 53(13), 1120–1129 (2002)CrossRefGoogle Scholar
  41. 41.
    Kelly, D.: Methods for evaluating interactive information retrieval systems with users. Found. Trends Inf. Retrieval (FnTIR) 3(1–2), 1–224 (2009)Google Scholar
  42. 42.
    Khare, R., An, Y., Song, I.-Y.: Understanding deep web search interfaces: a survey. SIGMOD Rec. 39(1), 33–40 (2010)CrossRefGoogle Scholar
  43. 43.
    Luo, Y., Lin, X., Wang, W., Zhou, X.: SPARK: top-k keyword query in relational databases. In: Proceedings of ACM SIGMOD International Conference on Management Of Data (SIGMOD), pp. 115–126. ACM, New York (2007)Google Scholar
  44. 44.
    Marchionini, G.: Exploratory search: from finding to understanding. Commun. ACM 49(4), 41–46 (2006)CrossRefGoogle Scholar
  45. 45.
    Rowe, B.R., Wood, D.W., Link, A.L., Simoni, D.A.: Economic impact assessment of NIST’s text retrieval conference (TREC) program. RTI Project Number 0211875, RTI International, USA, July 2010. http://trec.nist.gov/pubs/2010.economic.impact.pdf
  46. 46.
    Sakai, T.: Metrics, statistics, tests. In: Ferro, N. (ed.) PROMISE Winter School 2013. LNCS, vol. 8173, pp. 116–163. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  47. 47.
    Simitsis, A., Koutrika, G., Ioannidis, Y.E.: Précis: from unstructured keywords as queries to structured databases as answers. VLDB J. 17(1), 117–149 (2008)CrossRefGoogle Scholar
  48. 48.
    Smucker, M.D., Clarke, C.L.A.: Time-based calibration of effectiveness measures. In: Proceedings of the 35th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR), pp. 95–104. ACM, New York (2012)Google Scholar
  49. 49.
    Tata, S., Lohman, G.M.: SQAK: doing more with keywords. In: Proceedings of ACM SIGMOD International Conference on Management of Data (SIGMOD 2008), pp. 889–902. ACM Press, New York (2014)Google Scholar
  50. 50.
    Tsichritzis, D., Klug, A.: The ANSI/X3/SPARC DBMS framework report of the study group on database management systems. Inf. Syst. 3(3), 173–191 (1978)CrossRefGoogle Scholar
  51. 51.
    Webber, W.: Evaluating the effectiveness of keyword search. IEEE Data Eng. Bull. 33(1), 55–60 (2010)Google Scholar
  52. 52.
    Weikum, G.: Where’s the data in the big data wave? In: ACM SIGMOD Blog, March 2013. http://wp.sigmod.org/?p=786
  53. 53.
    Yu, J.X., Qin, L., Chang, L.: Keyword search in relational databases: a survey. IEEE Data Eng. Bull. 33(1), 67--78 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Sonia Bergamaschi
    • 1
  • Nicola Ferro
    • 2
  • Francesco Guerra
    • 1
  • Gianmaria Silvello
    • 2
  1. 1.Department of Engineering “Enzo Ferrari”University of Modena and Reggio EmiliaModenaItaly
  2. 2.Department of Information EngineeringUniversity of PaduaPaduaItaly

Personalised recommendations