Advertisement

On Hierarchical Communication Topologies in the \(\pi \)-calculus

  • Emanuele D’Osualdo
  • C.-H. Luke Ong
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9632)

Abstract

This paper is concerned with the shape invariants satisfied by the communication topology of \(\pi \text {-term}\)s, and the automatic inference of these invariants. A \(\pi \text {-term}\)P is hierarchical if there is a finite forest \(\mathcal {T}\) such that the communication topology of every term reachable from P satisfies a \(\mathcal {T}\)-shaped invariant. We design a static analysis to prove a term hierarchical by means of a novel type system that enjoys decidable inference. The soundness proof of the type system employs a non-standard view of \(\pi \text {-calculus}\) reactions. The coverability problem for hierarchical terms is decidable. This is proved by showing that every hierarchical term is depth-bounded, an undecidable property known in the literature. We thus obtain an expressive static fragment of the \(\pi \text {-calculus}\) with decidable safety verification problems.

Keywords

Normal Form Type System Base Type Typing Rule Type Inference 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

We would like to thank Damien Zufferey for helpful discussions on the nature of depth boundedness, and Roland Meyer for insightful feedback on a previous version of this paper.

References

  1. 1.
    Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.: General decidability theorems for infinite-state systems. In: Symposium on Logic in Computer Science, pp. 313–321. IEEE Computer Society (1996)Google Scholar
  2. 2.
    Amadio, R.M., Meyssonnier, C.: On decidability of the control reachability problem in the asynchronous \(\pi \)-calculus. Nordic J. Comput. 9(2), 70–101 (2002)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Deng, Y., Sangiorgi, D.: Ensuring termination by typability. Inf. Comput. 204(7), 1045–1082 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    D’Osualdo, E.: Verification of Message Passing Concurrent Systems. Ph.D. thesis, University of Oxford (2015). http://ora.ox.ac.uk/objects/uuid:f669b95b-f760-4de9-a62a-374d41172879
  5. 5.
    D’Osualdo, E., Ong, C.-H.L.: On hierarchical communication topologies in the pi-calculus. CoRR (2016). http://arxiv.org/abs/1601.01725
  6. 6.
    D’Osualdo, E., Kochems, J., Ong, C.-H.L.: Automatic verification of Erlang-style concurrency. In: Logozzo, F., Fähndrich, M. (eds.) Static Analysis. LNCS, vol. 7935, pp. 454–476. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Emerson, E.A., Trefler, R.J.: From asymmetry to full symmetry: new techniques for symmetry reduction in model checking. In: Pierre, L., Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 142–157. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  8. 8.
    Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theor. Comput. Sci. 256(1–2), 63–92 (2001)Google Scholar
  9. 9.
    Gay, S.J.: A sort inference algorithm for the polyadic \(\pi \)-calculus. In: Deusen, M.S.V., Lang, B. (eds.) Principles of Programming Languages (POPL), pp. 429–438. ACM Press (1993)Google Scholar
  10. 10.
    He, C.: The decidability of the reachability problem for CCS\(^\text{! }\). In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 373–388. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Hüchting, R., Majumdar, R., Meyer, R.: A theory of name boundedness. In: D’Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013 – Concurrency Theory. LNCS, vol. 8052, pp. 182–196. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. 12.
    Hüchting, R., Majumdar, R., Meyer, R.: Bounds on mobility. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 357–371. Springer, Heidelberg (2014)Google Scholar
  13. 13.
    Meyer, R.: On boundedness in depth in the \(\pi \)-calculus. In: IFIP International Conference on Theoretical Computer Science, IFIP TCS, pp. 477–489 (2008)Google Scholar
  14. 14.
    Meyer, R.: A theory of structural stationarity in the \(\pi \)-calculus. Acta Informatica 46(2), 87–137 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Meyer, R.: Structural stationarity in the \(\pi \)-calculus. Ph.D. thesis, University of Oldenburg (2009)Google Scholar
  16. 16.
    Meyer, R., Gorrieri, R.: On the relationship between \(\pi \)-calculus and finite place/transition Petri nets. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 463–480. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  17. 17.
    Milner, R.: Functions as processes. Math. Struct. Comput. Sci. 2(02), 119–141 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Milner, R.: The polyadic pi-calculus: a tutorial. Technical Report CS-LFCS-91-180, University of Edinburgh (1993)Google Scholar
  19. 19.
    Milner, R.: Communicating and Mobile Systems: the \(\pi \)-Calculus. Cambridge University Press, Cambridge (1999)zbMATHGoogle Scholar
  20. 20.
    Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, I, II. Inf. Comput. 100(1), 1–77 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Pierce, B.C., Sangiorgi, D.: Typing and subtyping for mobile processes. In: Symposium on Logic in Computer Science, pp. 376–385 (1993)Google Scholar
  22. 22.
    Pierce, B.C., Sangiorgi, D.: Behavioral equivalence in the polymorphic pi-calculus. J. ACM 47(3), 531–584 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Pnueli, A., Xu, J., Zuck, L.D.: Liveness with \({(0,1,\infty )}\)-counter abstraction. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 107–122. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  24. 24.
    Vasconcelos, V.T., Honda, K.: Principal typing schemes in a polyadic \(\pi \)-calculus. In: Best, E. (ed.) CONCUR 1993. LNCS, vol. 715, pp. 524–538. Springer, Heidelberg (1993)Google Scholar
  25. 25.
    Wies, T., Zufferey, D., Henzinger, T.A.: Forward analysis of depth-bounded processes. In: Ong, L. (ed.) FOSSACS 2010. LNCS, vol. 6014, pp. 94–108. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  26. 26.
    Zufferey, D., Wies, T., Henzinger, T.A.: Ideal abstractions for well-structured transition systems. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 445–460. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.TU KaiserslauternKaiserslauternGermany
  2. 2.University of OxfordOxfordUK

Personalised recommendations