A Timed Process Algebra for Wireless Networks with an Application in Routing

(Extended Abstract)
  • Emile Bres
  • Rob van Glabbeek
  • Peter Höfner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9632)


This paper proposes a timed process algebra for wireless networks, an extension of the Algebra for Wireless Networks. It combines treatments of local broadcast, conditional unicast and data structures, which are essential features for the modelling of network protocols. In this framework we model and analyse the Ad hoc On-Demand Distance Vector routing protocol, and show that, contrary to claims in the literature, it fails to be loop free. We also present boundary conditions for a fix ensuring that the resulting protocol is indeed loop free.


Transmission Range Operational Semantic Wireless Mesh Network Parallel Composition Process Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



NICTA is funded by the Australian Government through the Department of Communications and the Australian Research Council through the ICT Centre of Excellence Program.


  1. 1.
    Baeten, J., Bergstra, J.: Discrete time process algebra. Formal Aspects Comput. 8(2), 188–208 (1996). doi: 10.1007/BF01214556 CrossRefzbMATHGoogle Scholar
  2. 2.
    Bergstra, J.A., Klop, J.W.: Observation of strains: algebra of communicating processes. In: de Bakker, J.W., Hazewinkel, M., Lenstra, J.K. (eds) Mathematics and Computer Science, CWI Monograpph 1, pp. 89–138. North-Holland (2011)Google Scholar
  3. 3.
    Bhargavan, K., Obradovic, D., Gunter, C.A.: Formal verification of standards for distance vector routing protocols. J. ACM 49(4), 538–576 (2002). doi: 10.1145/581771.581775 MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bolognesi, T., Brinksma, E.: Introduction to the ISO Specification Language LOTOS. Comput. Netw. 14, 25–59 (1987). doi: 10.1016/0169-7552(87)90085-7 Google Scholar
  5. 5.
    Bres, E., van Glabbeek, R.J., Höfner, P.: A Timed Process Algebra for Wireless Networks with an Application in Routing. Technical Report 9145, NICTA (2016).
  6. 6.
    Chiyangwa, S., Kwiatkowska, M.: A timing analysis of AODV. In: Steffen, M., Zavattaro, G. (eds.) FMOODS 2005. LNCS, vol. 3535, pp. 306–321. Springer, Heidelberg (2005). doi: 10.1007/11494881_20 CrossRefGoogle Scholar
  7. 7.
    Clausen, T., Jacquet, P.: Optimized Link State Routing Protocol (OLSR). RFC 3626 (Experimental), Network Working Group (2003).
  8. 8.
    Cranen, S., Mousavi, M.R., Reniers, M.A.: A rule format for associativity. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 447–461. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-85361-9_35 Google Scholar
  9. 9.
    Edenhofer, S., Höfner, P.: Towards a rigorous analysis of AODVv2 (DYMO). In: Rigorous Protocol Engineering (WRiPE 2012). IEEE (2012). doi: 10.1109/ICNP.2012.6459942
  10. 10.
    Fehnker, A., van Glabbeek, R., Höfner, P., McIver, A., Portmann, M., Tan, W.L.: A process algebra for wireless mesh networks. In: Seidl, H. (ed.) Programming Languages and Systems. LNCS, vol. 7211, pp. 295–315. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-28869-2_15 CrossRefGoogle Scholar
  11. 11.
    Fehnker, A., van Glabbeek, R.J., Höfner, P., McIver, A.K., Portmann, M., Tan, W.L.: A Process Algebra for Wireless Mesh Networks used for Modelling, Verifying and Analysing AODV. Technical report 5513, NICTA (2013).
  12. 12.
    Garcia-Luna-Aceves, J.J.: A unified approach to loop-free routing using distance vectors or link states. In: SIGCOMM 1989, SIGCOMM Computer Communication Review 19(4), pp. 212–223. ACM Press (1989). doi: 10.1145/75246.75268
  13. 13.
    Garcia-Luna-Aceves, J.J., Rangarajan, H.: A new framework for loop-free on-demand routing using destination sequence numbers. In: MASS 2004, pp. 426–435. IEEE (2004). doi: 10.1109/MAHSS.2004.1392182
  14. 14.
    van Glabbeek, R.J.: The linear time - branching time spectrum II; the semantics of sequential systems with silent moves. In: Best, E. (ed.) CONCUR 1993. LNCS, vol. 715, pp. 66–81. Springer, Heidelberg (1993). doi: 10.1007/3-540-57208-2_6 Google Scholar
  15. 15.
    Glabbeek, R.J., Höfner, P., Portmann, M., Tan, W.L.: Modelling and Verifying the AODV Routing Protocol. Distributed Computing (2016) (to appear)Google Scholar
  16. 16.
    van Glabbeek, R.J., Höfner, P., Tan, W.L., Portmann, M.: Sequence numbers do not guarantee loop freedom –AODV can yield routing loops–. In: MSWiM 2013, pp. 91–100. ACM Press (2013). doi: 10.1145/2507924.2507943
  17. 17.
    Hennessy, M., Regan, T.: A process algebra for timed systems. Inf. Comput. 117(2), 221–239 (1995). doi: 10.1006/inco.1995.1041 MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall, Englewood Cliffs (1985)zbMATHGoogle Scholar
  19. 19.
    Höfner, P., van Glabbeek, R.J., Tan, W.L., Portmann, M., McIver, A.K., Fehnker, A.: A Rigorous analysis of AODV and its variants. In: MSWiM 2012, pp. 203–212. ACM Press (2012). doi: 10.1145/2387238.2387274
  20. 20.
    IEEE: IEEE Standard for Information Technology—Telecommunications and information exchange between systems—Local and metropolitan area networks —Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications Amendment 10: Mesh Networking (2011). doi: 10.1109/IEEESTD.2011.6018236
  21. 21.
    Lynch, N., Tuttle, M.: An introduction to input/output automata. CWI-Q. 2(3), 219–246 (1989). Centrum voor Wiskunde en Informatica, AmsterdamMathSciNetzbMATHGoogle Scholar
  22. 22.
    McCune, W.W.: Prover9 and Mace4. mccune/prover9. Accessed 10 October 2015
  23. 23.
    Milner, R.: Communication and Concurrency. Prentice Hall, Upper Saddle River (1989)zbMATHGoogle Scholar
  24. 24.
    Moller, F., Tofts, C.: A temporal calculus of communicating systems. In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 401–415. Springer, Heidelberg (1990). doi: 10.1007/BFb0039073 CrossRefGoogle Scholar
  25. 25.
    Namjoshi, K.S., Trefler, R.J.: Loop freedom in AODVv2. In: Graf, S., Viswanathan, M. (eds.) FORTE 2015. LNCS, vol. 9039, pp. 98–112. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-19195-9_7 CrossRefGoogle Scholar
  26. 26.
    Neumann, A., Aichele, M., Lindner, C., Wunderlich, S.: Better Approach To Mobile Ad-hoc Networking (B.A.T.M.A.N.). Internet-Draft (Experimental), Network Working Group (2008).
  27. 27.
    Nicollin, X., Sifakis, J.: The algebra of timed processes, ATP: theory and application. Inf. Comput. 114(1), 131–178 (1994). doi: 10.1006/inco.1994.1083 MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Ouaknine, J., Schneider, S.: Timed CSP: a retrospective. Electronic Notes Theor. Comput. Sci. 162, 273–276 (2006). doi: 10.1016/j.entcs.2005.12.093 CrossRefGoogle Scholar
  29. 29.
    Perkins, C.E., Belding-Royer, E.M., Das, S.: Ad hoc On-Demand Distance Vector (AODV) Routing. RFC 3561 (Experimental), Network Working Group (2003).
  30. 30.
    Perkins, C.E., Royer, E.M.: Ad-hoc on-demand distance vector routing. In: Mobile Computing Systems and Applications (WMCSA 1999), pp. 90–100. IEEE (1999). doi: 10.1109/MCSA.1999.749281
  31. 31.
    Plotkin, G.D.: A structural approach to operational semantics. J. Logic Algebraic Program. 60–61, 17–139 (2004). doi: 10.1016/j.jlap.2004.05.001. Originally appeared in (1981)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Reed, G., Roscoe, A.: A timed model for communicating sequential processes. In: Kott, L. (ed.) ICALP 1986. LNCS, vol. 226, pp. 314–323. Springer, Heidelberg (1986). doi: 10.1007/3-540-16761-7_81 CrossRefGoogle Scholar
  33. 33.
    de Simone, R.: Higher-level synchronising devices in meije-SCCS. Theor. Comput. Sci. 37, 245–267 (1985). doi: 10.1016/0304-3975(85)90093-3 MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Singh, A., Ramakrishnan, C.R., Smolka, S.A.: A process calculus for Mobile Ad Hoc Networks. Sci. Comput. Program. 75, 440–469 (2010). doi: 10.1016/j.scico.2009.07.008 MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Zhou, M., Yang, H., Zhang, X., Wang, J.: The proof of AODV loop freedom. In: Wireless Communications & Signal Processing (WCSP 2009), IEEE (2009). doi: 10.1109/WCSP.2009.5371479

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Emile Bres
    • 1
    • 3
  • Rob van Glabbeek
    • 1
    • 2
  • Peter Höfner
    • 1
    • 2
  1. 1.NICTASydneyAustralia
  2. 2.Computer Science and EngineeringUniversity of New South WalesSydneyAustralia
  3. 3.École PolytechniqueParisFrance

Personalised recommendations