Simulating Cities: A Software Engineering Perspective

  • Cristina V. Lopes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9632)


Despite all the reasons why complex simulations are desirable for decision and policy making, and despite advances in computing power, large distributed simulations of urban areas are still rarely used, with most of their adoption in military applications. The reality is that developing distributed simulations is much harder than developing non-distributed, specialized ones, and requires a much higher level of software engineering expertise.

This paper looks at urban simulations from a software engineering and systems design perspective, and puts forward the idea that non-traditional decompositions in simulation load management are not just beneficial for these applications, but are likely the only way to move that field forward.


Simulation Programming Software architecture Systems design 


  1. 1.
    Barnes, P.D., Carothers, C.D., Jefferson, D.R., LaPre, J.M.: Warp speed: executing time warp on 1,966,080 cores. In: Proceedings of the 2013 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation - SIGSIM-PADS 2013, New York, USA, p. 327. ACM, New York (2013).
  2. 2.
    Boer, C., Bruin, A., Verbraeck, A.: Distributed simulation in industry - a survey part 2 - experts on distributed simulation. In: Proceedings of the 2006 Winter Simulation Conference, pp. 1061–1068. IEEE, December 2006.,
  3. 3.
    Boer, C., De Bruin, A., Verbraeck, A.: Distributed simulation in industry - a survey part 1 - the cots vendors. In: Proceedings of the 2006 Winter Simulation Conference, pp. 1053–1060. IEEE, December 2006.,
  4. 4.
    Boer, C.A., de Bruin, A., Verbraeck, A.: Distributed simulation in industry - a survey part 3 - the HLA standard in industry. In: Proceedings of the 2008 Winter Simulation Conference, pp. 1094–1102. IEEE, December 2008.,
  5. 5.
  6. 6.
    Bruzzone, A.G., Dato, L., Ferrando, A.: Simulation exploration experience: providing effective surveillance and defense for a moon base against threats from outer space. In: 2014 IEEE/ACM 18th International Symposium on Distributed Simulation and Real Time Applications, pp. 121–126, October 2014.
  7. 7.
    Cameron, G.D., Duncan, G.I.: Paramicsparallel microscopic simulation of road traffic. J. Supercomput. 10(1), 25–53 (1996)CrossRefGoogle Scholar
  8. 8.
    Carlsson, C., Hagsand, O.: DIVE a multi-user virtual reality system. In: Proceedings of IEEE Virtual Reality Annual International Symposium - VRAIS 1993, pp. 394–400 (1993).
  9. 9.
    Committee, D.S.: IEEE Standard for Distributed Interactive Simulation-Application Protocols. IEEE Standard 1995 (1998)Google Scholar
  10. 10.
    Cutter, S.L., Ahearn, J.A., Amadei, B., Crawford, P., Eide, E.A., Galloway, G.E., Goodchild, M.F., Kunreuther, H.C., Li-Vollmer, M., Schoch-Spana, M., et al.: Disaster resilience: a national imperative. Environ. Sci. Policy Sustain. Dev. 55(2), 25–29 (2013)CrossRefGoogle Scholar
  11. 11.
    Elfrey, P.R., Zacharewicz, G., Ni, M.: Smackdown: adventures in simulation standards and interoperability. In: Winter Simulation Conference Proceedings of the Winter Simulation Conference, pp. 3963–3967 (2011)Google Scholar
  12. 12.
    Essilfie-Conduah, N., Grogan, P., Cunio, P.M., McLinko, R., de Weck, O.L.: A university perspective on the nasa/siso smackdown modeling and simulation outreach event (2011)Google Scholar
  13. 13.
    Falcone, A., Garro, A., Longo, F., Spadafora, F.: Simulation exploration experience: a communication system and a 3D real time visualization for a moon base simulated scenario. In: 2014 IEEE/ACM 18th International Symposium on Distributed Simulation and Real Time Applications, pp. 113–120, October 2014.
  14. 14.
    Fellendorf, M.: Vissim: a microscopic simulation tool to evaluate actuated signal control including bus priority. In: 64th Institute of Transportation Engineers Annual Meeting, pp. 1–9 (1994)Google Scholar
  15. 15.
    Fernandes, R., Vieira, F., Ferreira, M.: Parallel microscopic simulation of metropolitan-scale traffic. In: Proceedings of the 46th Annual Simulation Symposium, ANSS 2013, pp. 10:1–10:8. Society for Computer Simulation International, San Diego (2013).
  16. 16.
    Fujimoto, R.M.: Parallel and distributed simulation. In: Proceedings of the 2014 Winter Simulation Conference, WSC 2014, p. 5. IEEE Press, Piscataway (2014).
  17. 17.
    Gipps, P.G.: A behavioural car-following model for computer simulation. Transp. Res. Part B Methodological 15(2), 105–111 (1981)CrossRefGoogle Scholar
  18. 18.
    Horn, D., Cheslack-Postava, E., Mistree, B.F., Azim, T., Terrace, J., Freedman, M.J., Levis, P.: To infinity and not beyond: scaling communication in virtual worlds with Meru. Technical report, Stanford University (2010).
  19. 19.
    IEEE Standards Association: 1516–2000 IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA)-Framework and Rules (2000)Google Scholar
  20. 20.
    Kaplan, J., Yankelovich, N.: Open wonderland: an extensible virtual world architecture. IEEE Internet Computing 15(5), 38–45 (2011). CrossRefGoogle Scholar
  21. 21.
    Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J.-M., Irwin, J.: Aspect-oriented programming. In: Akşit, M., Matsuoka, S. (eds.) ECOOP 1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997). CrossRefGoogle Scholar
  22. 22.
    Krajzewicz, D., Erdmann, J., Behrisch, M., Bieker, L.: Recent development and applications of SUMO - simulation of urban mobility. Int. J. Adv. Syst. Meas. 5(3&4), 128–138 (2012)Google Scholar
  23. 23.
    Lake, D., Bowman, M., Liu, H.: Distributed scene graph to enable thousands of interacting users in a virtual environment. In: Proceedings of the 9th Annual Workshop on Network and Systems Support for Games - NetGames 2010, pp. 1–6. IEEE Computer Society, November 2010.
  24. 24.
    Leonard, D., Tough, J., Baguley, P.: Contram: a traffic assignment model for predicting flows and queues during peak periods. Technical report, Transport and Road Research Laboratory (1978)Google Scholar
  25. 25.
    Lighthill, M.J., Whitham, G.B.: On kinematic waves. II. a theory of traffic flow on long crowded roads. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 229(1178), 317–345 (1955)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Liu, H., Bowman, M.: Scale virtual worlds through dynamic load balancing. In: 2010 IEEE/ACM 14th International Symposium on Distributed Simulation and Real Time Applications, pp. 43–52, October 2010Google Scholar
  27. 27.
    Liu, H., Bowman, M., Adams, R., Hurliman, J., Lake, D.: Scaling virtual worlds: simulation requirements and challenges. In: Johansson, B., Jain, S., Montoya-Torres, J., Hugan, J., Yücesan, E. (eds.) Proceedings of the 2010 Winter Simulation Conference (WSC), WSC 2010, pp. 778–790. IEEE Computer Society, Baltimore, December 2010.
  28. 28.
    Maciejewski, M.: A comparison of microscopic traffic flow simulation systems for an urban area. Probl. Transportu 5, 27–38 (2010)Google Scholar
  29. 29.
    Miller, D., Thorpe, J.: SIMNET: the advent of simulator networking. Proc. IEEE 83(8), 1114–1123 (1995)CrossRefGoogle Scholar
  30. 30.
    Nagatani, T.: Gas kinetic approach to two-dimensional traffic flow. J. Phys. Soc. Jpn. 65(10), 3150–3152 (1996)CrossRefGoogle Scholar
  31. 31.
    Nagel, K., Schreckenberg, M.: A cellular automaton model for freeway traffic. J. Phys. 2(12), 2221–2229 (1992)Google Scholar
  32. 32.
    OpenSimulator.: OpenSimulator.
  33. 33.
    Potuzak, T.: Distributed-parallel road traffic simulator for clusters of multi-core computers. In: 2012 IEEE/ACM 16th International Symposium on Distributed Simulation and Real Time Applications, pp. 195–201, October 2012.
  34. 34.
    Pursula, M.: Simulation of traffic systems-an overview. J. Geogr. Inf. Decis. Anal. 3(1), 1–8 (1999)Google Scholar
  35. 35.
    Smith, L., Beckman, R., Anson, D., Nagel, K., Williams, M.E.: Transims: transportation analysis and simulation system. In: Fifth National Conference on Transportation Planning Methods Applications-Volume II: A Compendium of Papers Based on a Conference Held in Seattle, Washington (1995)Google Scholar
  36. 36.
    Stafford, S.G., Bartels, D.M., Begay-Campbell, S., Bubier, J.L., Crittenden, J.C., Cutter, S.L., Delaney, J.R., Jordan, T.E., Kay, A.C., Libecap, G.D., et al.: Now is the time for action: transitions and tipping points in complex environmental systems. Environ. Sci. Policy Sustain. Dev. 52(1), 38–45 (2010)CrossRefGoogle Scholar
  37. 37.
    Strassburger, S., Schulze, T., Fujimoto, R.: Future trends in distributed simulation and distributed virtual environments: results of a peer study. In: Proceedings of the 2008 Winter Simulation Conference, pp. 777–785. IEEE, December 2008.,
  38. 38.
    Taylor, S.J., Revagar, N., Chambers, J., Yero, M., Anagnostou, A., Nouman, A., Chaudhry, N.R., Elfrey, P.R.: Simulation exploration experience: a distributed hybrid simulation of a lunar mining operation. In: 2014 IEEE/ACM 18th International Symposium on Distributed Simulation and Real Time Applications, pp. 107–112, October 2014.
  39. 39.
    Tolk, A.: Avoiding another Green Elephant - a proposal for the next generation HLA based on the model driven architecture. In: 2002 Fall Simulation Interoperability Workshop, Orlando, Florida, pp. 1–12, November 2010.
  40. 40.
    United Nations: World Urbanization Prospects (2014).
  41. 41.
    Waddell, P.: UrbanSim: modeling urban development for land use, transportation, and environmental planning. J. Am. Plan. Assoc. 68(3), 297–314 (2002). CrossRefGoogle Scholar
  42. 42.
    Waddell, P., Ulfarsson, G.: Introduction to urban simulation: design and developmentof operational models. In: Haynes, K., Stopher, P., Button, K., Hensher, D. (eds.) Handbooks in Transport, vol. 5. Elsevier, Oxford (2004)Google Scholar
  43. 43.
    Waters, R.C., Anderson, D.B., Barrus, J.W., Brogan, D.C., Casey, M.A., McKeown, S.G., Nitta, T., Sterns, I.B., Yerazunis, W.S.: Diamond park and spline: a social virtual reality system with 3D animation, spoken interaction, and runtime modifiability. Presence Teleoperators Virtual Environ. 6(4), 461–480 (1997). CrossRefGoogle Scholar
  44. 44.
    White, J., Stevens, B., Holden, R.: Strategic Transport Infrastructure Needs to 2030. OECD, Paris (2012). Google Scholar
  45. 45.
    Xu, M., Crittenden, J.C., Chen, Y., Thomas, V.M., Noonan, D.S., DesRoches, R., Brown, M.A., French, S.P.: Gigaton problems need gigaton solutions 1. Environ. Sci. Technol. 44(11), 4037–4041 (2010)CrossRefGoogle Scholar
  46. 46.
    Xu, Y., Tan, G.: An offline road network partitioning solution in distributed transportation simulation. In: 2012 IEEE/ACM 16th International Symposium on Distributed Simulation and Real Time Applications (DS-RT), pp. 210–217. IEEE (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.University of CaliforniaIrvineUSA

Personalised recommendations