Automated Heart Localization in Cardiac Cine MR Data

  • Roxana Hoffmann
  • Franziska Bertelshofer
  • Christian Siegl
  • Rolf Janka
  • Roberto Grosso
  • Günther Greiner
Conference paper
Part of the Informatik aktuell book series (INFORMAT)

Abstract

Cardiac MRI is the modality of choice in cardiology for the assessment of the ventricular function, since the heart’s anatomy is visualized with high resolution. This functional assessment is a timeconsuming task for the cardiac radiologist when performed manually. Therefore, computer-driven diagnostic solutions are of particular importance for clinical applications. In order to ensure the success of such computer aided diagnosis algorithms however, a correct, initial localization of the heart region in the raw data is crucial. For this purpose, we present a novel, simple and fully automated approach for localizing the heart region in cardiac cine MR data. Without the need for prior knowledge or training datasets, this method enables a ready to use application for a robust localization. This processing step is a fundamental component for the development of integrated automated applications.

References

  1. 2.
    Cocosco CA, Netsch T, Sénégas J, et al. Automatic cardiac region-of-interest computation in cine 3D structural MRI. Int Congr Ser. 2004;1268:1126–31.CrossRefGoogle Scholar
  2. 5.
    Hadhoud MMA, Eladawy MI, Farag A., Region of interest localization of cardiac structure from cine MRI images. Proc Int Conf Inf Technol New Gener. 2012; p. 14–7.Google Scholar
  3. 3.
    Constantinides C, Chenoune Y, Mousseaux E, et al. Automated heart localization for the segmentation of the ventricular cavities on cine magnetic resonance images. Comput Cardiol. 2010; p. 911–4.Google Scholar
  4. 4.
    Farag A, Fakhreldin M. Heart localization from magnetic resonance images sequence. J Comput Sci. 2012;8(4):499–505.CrossRefGoogle Scholar
  5. 8.
    Zambal S, Schöllhuber A, Bühler K, et al. Fast and robust localization of the heart in cardiac MRI series. Proc Int Conf Comput Vis Theory Appl. 2008;1:341–6.Google Scholar
  6. 6.
    Labrador AMA, Martinez F, Castro ER., A novel right ventricle segmentation approach from local spatio-temporal MRI information. Prog Pattern Recognit Image Anal Computer Vis Appl. 2013;8259:206–13.CrossRefGoogle Scholar
  7. 7.
    Manzanera A, Richefeu JC. A new motion detection algorithm based on Σ-∆ background estimation. Pattern Recognit Lett. 2007;28(3):320–8.CrossRefGoogle Scholar
  8. 1.
    Adelson EH, Anderson CH, Bergen JR, et al. Pyramid methods in image processing. RCA Eng. 1984;29(6):33–41.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Roxana Hoffmann
    • 1
  • Franziska Bertelshofer
    • 1
  • Christian Siegl
    • 1
  • Rolf Janka
    • 2
  • Roberto Grosso
    • 1
  • Günther Greiner
    • 1
  1. 1.Computer Graphics GroupUniversity of Erlangen-NurembergErlangen-Nuremberg
  2. 2.Radiology DepartmentUniversitätsklinikum ErlangenErlangen

Personalised recommendations