Advertisement

Universally Composable Direct Anonymous Attestation

  • Jan Camenisch
  • Manu Drijvers
  • Anja Lehmann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9615)

Abstract

Direct Anonymous Attestation (DAA) is one of the most complex cryptographic algorithms that has been deployed in practice. In spite of this and the long body of work on the subject, there is still no fully satisfactory security definition for DAA. This was already acknowledged by Bernard et al. (IJIC’13) who showed that in existing models insecure protocols can be proved secure. Bernard et al. therefore proposed an extensive set of security games which, however, aim only at a simplified setting termed pre-DAA. In pre-DAA, the host platform that runs the TPM is assumed to be trusted. Consequently, their notion does not guarantee any security if the TPM is embedded in a potentially corrupt host which is a significant restriction. In this paper, we give a comprehensive security definition for full DAA in the form of an ideal functionality in the Universal Composability model. Our definition considers the host and TPM to be separate entities that can be in different corruption states. None of the existing DAA schemes satisfy our strong security notion. We therefore propose a realization that is based on a DAA scheme supported by the TPM 2.0 standard and prove it secure in our model.

Notes

Acknowledgements

This work was supported by the European Commission through the Seventh Framework Programme, under grant agreements #321310 for the PERCY grant and #318424 for the project FutureID.

References

  1. 1.
    Backes, M., Hofheinz, D.: How to break and repair a universally composable signature functionality. In: Zhang, K., Zheng, Y. (eds.) ISC 2004. LNCS, vol. 3225, pp. 61–72. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: ACM CCS (1993)Google Scholar
  3. 3.
    Bernhard, D., Fuchsbauer, G., Ghadafi, E., Smart, N., Warinschi, B.: Anonymous attestation with user-controlled linkability. Int. J. Inf. Secur. 12(3), 219–249 (2013)CrossRefGoogle Scholar
  4. 4.
    Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. In: ACM CCS (2004)Google Scholar
  6. 6.
    Brickell, E., Chen, L., Li, J.: A new direct anonymous attestation scheme from bilinear maps. In: Lipp, P., Sadeghi, A.-R., Koch, K.-M. (eds.) Trust 2008. LNCS, vol. 4968, pp. 166–178. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Brickell, E., Chen, L., Li, J.: Simplified security notions of direct anonymous attestation and a concrete scheme from pairings. Int. J. Inf. Secur. 8(5), 315–330 (2009)CrossRefGoogle Scholar
  8. 8.
    Camenisch, J., Kiayias, A., Yung, M.: On the portability of generalized schnorr proofs. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 425–442. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Camenisch, J.L., Lysyanskaya, A.: Signature schemes and anonymous credentials from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 56–72. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Camenisch, J.L., Shoup, V.: Practical verifiable encryption and decryption of discrete logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Camenisch, J.L., Stadler, M.A.: Efficient group signature schemes for large groups. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer, Heidelberg (1997)Google Scholar
  12. 12.
    Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. ePrint Archive Report 2000/067 (2000)Google Scholar
  13. 13.
    Canetti, R.: Universally composable signatures, certification and authentication. ePrint Archive, Report 2003/239 (2003)Google Scholar
  14. 14.
    Chen, L., Morrissey, P., Smart, N.: DAA: fixing the pairing based protocols. ePrint Archive, Report 2009/198 (2009)Google Scholar
  15. 15.
    Chen, L.: A DAA scheme requiring less TPM resources. In: Bao, F., Yung, M., Lin, D., Jing, J. (eds.) Inscrypt 2009. LNCS, vol. 6151, pp. 350–365. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Chen, L., Morrissey, P., Smart, N.P.: Pairings in trusted computing (invited talk). PAIRING (2008)Google Scholar
  17. 17.
    Chen, L., Morrissey, P., Smart, N.P.: On proofs of security for DAA schemes. In: Baek, J., Bao, F., Chen, K., Lai, X. (eds.) ProvSec 2008. LNCS, vol. 5324, pp. 156–175. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Chen, L., Page, D., Smart, N.P.: On the design and implementation of an efficient DAA scheme. In: Gollmann, D., Lanet, J.-L., Iguchi-Cartigny, J. (eds.) CARDIS 2010. LNCS, vol. 6035, pp. 223–237. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  19. 19.
    Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)CrossRefGoogle Scholar
  20. 20.
    International Organization for Standardization: ISO/IEC 20008–2: Information technology - Security techniques - Anonymous digital signatures - Part 2: Mechanisms using a group public key (2013)Google Scholar
  21. 21.
    Lysyanskaya, A., Rivest, R.L., Sahai, A., Wolf, S.: Pseudonym systems (extended abstract). In: Heys, H.M., Adams, C.M. (eds.) SAC 1999. LNCS, vol. 1758, pp. 184–199. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  22. 22.
    Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  23. 23.
    Trusted Computing Group: TPM main specification version 1.2 (2004)Google Scholar
  24. 24.
    Trusted Computing Group: Trusted platform module library specification, family “2.0” (2014)Google Scholar
  25. 25.
    Xi, L., Yang, K., Zhang, Z., Feng, D.: DAA-related APIs in TPM 2.0 revisited. In: Holz, T., Ioannidis, S. (eds.) Trust 2014. LNCS, vol. 8564, pp. 1–18. Springer, Heidelberg (2014)Google Scholar

Copyright information

© International Association for Cryptologic Research 2016

Authors and Affiliations

  1. 1.IBM Research – ZurichRüschlikonSwitzerland
  2. 2.Department of Computer ScienceETH ZürichZürichSwitzerland

Personalised recommendations