Advertisement

Functional Encryption for Inner Product with Full Function Privacy

  • Pratish Datta
  • Ratna Dutta
  • Sourav Mukhopadhyay
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9614)

Abstract

Functional encryption (FE) supports constrained decryption keys that allow decrypters to learn specific functions of encrypted messages. In numerous practical applications of FE, confidentiality must be assured not only for the encrypted data but also for the functions for which functional keys are provided. This paper presents a non-generic simple private key FE scheme for the inner product functionality, also known as inner product encryption (IPE). In contrast to the existing similar schemes, our construction achieves the strongest indistinguishability-based notion of function privacy in the private key setting without employing any computationally expensive cryptographic tool or non-standard complexity assumption. Our construction is built in the asymmetric bilinear pairing group setting of prime order. The security of our scheme is based on the well-studied Symmetric External Diffie-Hellman (SXDH) assumption.

Keywords

Functional encryption Inner product Function privacy Asymmetric bilinear group 

References

  1. 1.
    Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733–751. Springer, Heidelberg (2015)Google Scholar
  2. 2.
    Agrawal, S., Agrawal, S., Badrinarayanan, S., Kumarasubramanian, A., Prabhakaran, M., Sahai, A.: Function private functional encryption and property preserving encryption: new definitions and positive results. Technical report, Cryptology ePrint Archive, Report 2013/744 (2013)Google Scholar
  3. 3.
    Bishop, A., Jain, A., Kowalczyk, L.: Function-hiding inner product encryption. Technical report, Cryptology ePrint Archive, Report 2015/672 (2015)Google Scholar
  4. 4.
    Boneh, D., Raghunathan, A., Segev, G.: Function-private identity-based encryption: hiding the function in functional encryption. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 461–478. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  5. 5.
    Boneh, D., Raghunathan, A., Segev, G.: Function-private subspace-membership encryption and its applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 255–275. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  6. 6.
    Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Boyle, E., Chung, K.-M., Pass, R.: On extractability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 52–73. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  8. 8.
    Brakerski, Z., Segev, G.: Function-private functional encryption in the private-key setting. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 306–324. Springer, Heidelberg (2015)Google Scholar
  9. 9.
    Datta, P., Dutta, R., Mukhopadhyay, S.: Functional encryption for inner product with full function privacy. Technical report, Cryptology ePrint Archive, Report 2015/1255 (2015)Google Scholar
  10. 10.
    Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Fully secure functional encryption without obfuscation. Technical report, Cryptology ePrint Archive, Report 2014/666 (2014)Google Scholar
  11. 11.
    Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: 2013 IEEE 54th Annual Symposium on Foundations of Computer Science (FOCS), pp. 40–49. IEEE (2013)Google Scholar
  12. 12.
    Goldwasser, S., Kalai, Y., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: Reusable garbled circuits and succinct functional encryption. In: Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of Computing, pp. 555–564. ACM (2013)Google Scholar
  13. 13.
    Okamoto, T., Takashima, K.: Fully secure functional encryption with general relations from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Okamoto, T., Takashima, K.: Fully secure unbounded inner-product and attribute-based encryption. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 349–366. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    O’Neill, A.: Definitional issues in functional encryption. Technical report, Cryptology ePrint Archive, Report 2010/556 (2010)Google Scholar
  16. 16.
    Shen, E., Shi, E., Waters, B.: Predicate privacy in encryption systems. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 457–473. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2016

Authors and Affiliations

  • Pratish Datta
    • 1
  • Ratna Dutta
    • 1
  • Sourav Mukhopadhyay
    • 1
  1. 1.Department of MathematicsIndian Institute of Technology KharagpurKharagpurIndia

Personalised recommendations