Advertisement

Nearly Optimal Verifiable Data Streaming

  • Johannes KruppEmail author
  • Dominique Schröder
  • Mark Simkin
  • Dario Fiore
  • Giuseppe Ateniese
  • Stefan Nuernberger
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9614)

Abstract

The problem of verifiable data streaming (VDS) considers the setting in which a client outsources a large dataset to an untrusted server and the integrity of this dataset is publicly verifiable. A special property of VDS is that the client can append additional elements to the dataset without changing the public verification key. Furthermore, the client may also update elements in the dataset. All previous VDS constructions follow a hash-tree-based approach, but either have an upper bound on the size of the database or are only provably secure in the random oracle model. In this work, we give the first unbounded VDS constructions in the standard model. We give two constructions with different trade-offs. The first scheme follows the line of hash-tree-constructions and is based on a new cryptographic primitive called Chameleon Vector Commitment (CVC), that may be of independent interest. A CVC is a trapdoor commitment scheme to a vector of messages where both commitments and openings have constant size. Due to the tree-based approach, integrity proofs are logarithmic in the size of the dataset. The second scheme achieves constant size proofs by combining a signature scheme with cryptographic accumulators, but requires computational costs on the server-side linear in the number of update-operations.

Notes

Acknowledgments

This work was supported by the German Federal Ministry of Education and Research (BMBF) through funding for the Center for IT-Security, Privacy and Accountability (CISPA – www.cispa-security.org) and the project PROMISE. Moreover, it was supported by the Initiative for Excellence of the German federal and state governments through funding for the Saarbrücken Graduate School of Computer Science and the DFG MMCI Cluster of Excellence. Part of this work was also supported by the German research foundation (DFG) through funding for the collaborative research center 1223. Dominique Schröder was also supported by an Intel Early Career Faculty Honor Program Award.

References

  1. 1.
    Bao, F., Deng, R.H., Zhu, H.: Variations of Diffie-Hellman problem. In: Qing, S., Gollmann, D., Zhou, J. (eds.) ICICS 2003. LNCS, vol. 2836, pp. 301–312. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Benabbas, S., Gennaro, R., Vahlis, Y.: Verifiable delegation of computation over large datasets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 111–131. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Castle, B.: The Legion of the Bouncy Castle. https://www.bouncycastle.org
  4. 4.
    Camenisch, J., Kohlweiss, M., Soriente, C.: An accumulator based on bilinear maps and efficient revocation for anonymous credentials. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 481–500. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Camenisch, J.L., Lysyanskaya, A.: Dynamic accumulators and application to efficient revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 61–76. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Catalano, D., Fiore, D.: Vector commitments and their applications. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 55–72. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Damgård, I., Triandopoulos, N.: Supporting non-membership proofs with bilinear-map accumulators. Cryptology ePrint Archive, Report 2008/538 (2008). http://eprint.iacr.org/2008/538
  8. 8.
    Krawczyk, H., Rabin, T.: Chameleon signatures. In: ISOC Network and Distributed System Security Symposium - NDSS 2000. The Internet Society, February 2000Google Scholar
  9. 9.
    Krupp, J., Schröder, D., Simkin, M., Fiore, D., Ateniese, G., Nuernberger, S.: Nearly optimal verifiable data streaming (full version). Cryptology ePrint Archive, Report 2015/333 (2015). http://eprint.iacr.org/2015/333
  10. 10.
    Libert, B., Yung, M.: Concise mercurial vector commitments and independent zero-knowledge sets with short proofs. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 499–517. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Lynn, B.: PBC - C Library for Pairing Based Cryptography. http://crypto.stanford.edu/pbc/
  12. 12.
    Martel, C., Nuckolls, G., Devanbu, P., Gertz, M., Kwong, A., Stubblebine, S.G.: A general model for authenticated data structures. Algorithmica 39, 2004 (2001)MathSciNetGoogle Scholar
  13. 13.
    Maurer, U.M., Wolf, S.: Diffie-Hellman oracles. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 268–282. Springer, Heidelberg (1996)Google Scholar
  14. 14.
    Naor, M., Nissim, K.: Certificate revocation and certificate update. IEEE J. Sel. Areas Commun. 18(4), 561–570 (2000)CrossRefGoogle Scholar
  15. 15.
    Nguyen, L.: Accumulators from bilinear pairings and applications. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 275–292. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Papamanthou, C., Shi, E., Tamassia, R., Yi, K.: Streaming authenticated data structures. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 353–370. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  17. 17.
    Papamanthou, C., Tamassia, R.: Time and space efficient algorithms for two-party authenticated data structures. In: Qing, S., Imai, H., Wang, G. (eds.) ICICS 2007. LNCS, vol. 4861, pp. 1–15. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Perrig, A., Canetti, R., Song, D., Tygar, J.D.: Efficient and secure source authentication for multicast. In: ISOC Network and Distributed System Security Symposium - NDSS 2001, pp. 35–46. The Internet Society, February 2001Google Scholar
  19. 19.
    Perrig, A., Canetti, R., Tygar, J.D., Song, D.X.: Efficient authentication and signing of multicast streams over lossy channels. In: 2000 IEEE Symposium on Security and Privacy, pp. 56–73. IEEE Computer Society Press, May 2000Google Scholar
  20. 20.
    Ruffing, T., Kate, A., Schröder, D.: Liar, liar, coins on fire!: penalizing equivocation by loss of bitcoins. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, Denver, CO, USA, 12–6 October 2015, pp. 219–230. ACM (2015)Google Scholar
  21. 21.
    Schröder, D., Schröder, H.: Verifiable data streaming. In: Yu, T., Danezis, G., Gligor, V.D. (eds.) 19th Conference on Computer and Communications Security, ACM CCS 2012, pp. 953–964. ACM Press, October 2012Google Scholar
  22. 22.
    Schöder, D., Simkin, M.: VeriStream – a framework for verifiable data streaming. In: Böhme, R., Okamoto, T. (eds.) FC 2015. LNCS, vol. 8975, pp. 548–566. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  23. 23.
    Stefanov, E., van Dijk, M., Juels, A., Oprea, A.: Iris: a scalable cloud file system with efficient integrity checks. In: Proceedings of the 28th Annual Computer Security Applications Conference, ACSAC 2012, pp. 229–238. ACM, New York (2012)Google Scholar
  24. 24.
    Tamassia, R., Triandopoulos, N.: Certification and authentication of data structures. In: AMW (2010)Google Scholar

Copyright information

© International Association for Cryptologic Research 2016

Authors and Affiliations

  • Johannes Krupp
    • 1
    Email author
  • Dominique Schröder
    • 1
  • Mark Simkin
    • 1
  • Dario Fiore
    • 2
  • Giuseppe Ateniese
    • 3
  • Stefan Nuernberger
    • 1
  1. 1.CISPASaarland UniversitySaarbrückenGermany
  2. 2.IMDEA Software InstituteMadridSpain
  3. 3.Stevens Institute of TechnologyHobokenUSA

Personalised recommendations