Advertisement

Delegatable Functional Signatures

  • Michael Backes
  • Sebastian MeiserEmail author
  • Dominique Schröder
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9614)

Abstract

We introduce delegatable functional signatures (DFS) which support the delegation of signing capabilities to another party, called the evaluator, with respect to a functionality \(\mathcal {F} \). In a DFS, the signer of a message can choose an evaluator, specify how the evaluator can modify the signature without voiding its validity, allow additional input, and decide how the evaluator can further delegate its capabilities. Technically, DFS unify several seemingly different signature primitives, including functional signatures and policy-based signatures (PKC’14), sanitizable signatures, identity based signatures, and blind signatures. We characterize the instantiability of DFS with respect to the corresponding security notions of unforgeability and privacy. On the positive side we show that privacy-free DFS can be constructed from one-way functions. Furthermore, we show that unforgeable and private DFS can be constructed from doubly-enhanced trapdoor permutations. On the negative side we show that the previous result is optimal regarding its underlying assumptions presenting an impossibility result for unforgeable private DFS from one-way permutations.

Notes

Acknowledgments

We would like the Marc Fischlin, Özgür Dagdelen, and Sebastian Gajek for the helpful discussions and their encouragement to submit our work. We also thank the reviewers for the valuable comments. This work was supported by the German Federal Ministry of Education and Research (BMBF) through funding for the Center for IT-Security, Privacy and Accountability (CISPA – www.cispa-security.org) and the project PROMISE. Moreover, it was supported by the Initiative for Excellence of the German federal and state governments through funding for the Saarbrücken Graduate School of Computer Science and the DFG MMCI Cluster of Excellence. Part of this work was also supported by the German research foundation (DFG) through funding for the collaborative research center 1223. Dominique Schröder was also supported by an Intel Early Career Faculty Honor Program Award.

References

  1. 1.
    Acar, T., Nguyen, L.: Revocation for delegatable anonymous credentials. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 423–440. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Ahn, J.H., Boneh, D., Camenisch, J., Hohenberger, S., Shelat, A., Waters, B.: Computing on authenticated data. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 1–20. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Ateniese, G., Chou, D.H., de Medeiros, B., Tsudik, G.: Sanitizable signatures. In: di Vimercati, S.C., Syverson, P.F., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 159–177. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Attrapadung, N., Libert, B., Peters, T.: Computing on authenticated data: new privacy definitions and constructions. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 367–385. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Attrapadung, N., Libert, B., Peters, T.: Efficient completely context-hiding quotable and linearly homomorphic signatures. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 386–404. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  6. 6.
    Backes, M., Meiser, S., Schröder, D.: Delegatable functional signatures. Cryptology ePrint Archive, Report 408 (2013). http://eprint.iacr.org/
  7. 7.
    Barak, B., Mahmoody-Ghidary, M.: Lower bounds on signatures from symmetric primitives. In: 48th FOCS, pp. 680–688. IEEE Computer Society Press, October 2007Google Scholar
  8. 8.
    Bauer, L., Jia, L., Sharma, D.: Constraining credential usage in logic-based access control. In: 23rd IEEE Computer Security Foundations Symposium, CSF 2010, pp. 154–168. IEEE Computer Society (2010)Google Scholar
  9. 9.
    Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A., Shacham, H.: Randomizable proofs and delegatable anonymous credentials. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 108–125. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: P-signatures and noninteractive anonymous credentials. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 356–374. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Bellare, M., Fuchsbauer, G.: Policy-based signatures. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 520–537. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  12. 12.
    Bellare, M., Rogaway, P.: The security of triple encryption and a framework for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Boneh, D., Freeman, D.M.: Homomorphic signatures for polynomial functions. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 149–168. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Boneh, D., Freeman, D.M.: Linearly homomorphic signatures over binary fields and new tools for lattice-based signatures. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 1–16. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom functions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  16. 16.
    Brands, S.: Restrictive blinding of secret-key certificates. In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 231–247. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  17. 17.
    Brands, S.A.: Rethinking Public Key Infrastructures and Digital Certificates: Building in Privacy. The MIT Press, Cambridge (2000)Google Scholar
  18. 18.
    Brzuska, C., et al.: Redactable signatures for tree-structured data: definitions and constructions. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 87–104. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  19. 19.
    Brzuska, C., Fischlin, M., Lehmann, A., Schröder, D.: Unlinkability of sanitizable signatures. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 444–461. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  20. 20.
    Camenisch, J., Groß, T.: Efficient attributes for anonymous credentials. In: CCS 2008, pp. 345–356. ACM Press, October 2008Google Scholar
  21. 21.
    Camenisch, J.L., Lysyanskaya, A.: An efficient system for non-transferable anonymous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  22. 22.
    Camenisch, J.L., Lysyanskaya, A.: A signature scheme with efficient protocols. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  23. 23.
    Camenisch, J.L., Lysyanskaya, A.: Signature schemes and anonymous credentials from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 56–72. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  24. 24.
    Catalano, D.: Homomorphic signatures and message authentication codes. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 514–519. Springer, Heidelberg (2014)Google Scholar
  25. 25.
    Catalano, D., Fiore, D., Warinschi, B.: Homomorphic signatures with efficient verification for polynomial functions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 371–389. Springer, Heidelberg (2014)Google Scholar
  26. 26.
    Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Succinct malleable NIZKs and an application to compact shuffles. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 100–119. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  27. 27.
    Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Malleable signatures: new definitions and delegatable anonymous credentials. In: 2014 IEEE 27th Computer Security Foundations Symposium (CSF), pp. 199–213. IEEE (2014)Google Scholar
  28. 28.
    Coull, S., Green, M., Hohenberger, S.: Controlling access to an oblivious database using stateful anonymous credentials. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 501–520. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  29. 29.
    Freeman, D.M.: Improved security for linearly homomorphic signatures: a generic framework. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 697–714. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  30. 30.
    Fuchsbauer, G., Pointcheval, D.: Anonymous proxy signatures. In: Ostrovsky, R., De Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 201–217. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  31. 31.
    Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)CrossRefMathSciNetzbMATHGoogle Scholar
  32. 32.
    Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)CrossRefMathSciNetzbMATHGoogle Scholar
  33. 33.
    Johnson, R., Molnar, D., Song, D., Wagner, D.: Homomorphic signature schemes. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  34. 34.
    Katz, J., Schröder, D., Yerukhimovich, A.: Impossibility of blind signatures from one-way permutations. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 615–629. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  35. 35.
    Libert, B., Peters, T., Joye, M., Yung, M.: Linearly homomorphic structure preserving signatures and their applications. Des. Codes Crypt. 77(2–3), 441–477 (2015)CrossRefMathSciNetGoogle Scholar
  36. 36.
    Miyazaki, K., Hanaoka, G.: Invisibly sanitizable digital signature scheme. IEICE Trans. Fundament. Electron. Commun. Comput. Sci. 91(1), 392–402 (2008)CrossRefGoogle Scholar
  37. 37.
    Steinfeld, R., Bull, L., Zheng, Y.: Content extraction signatures. In: Kim, K. (ed.) ICISC 2001. LNCS, vol. 2288, pp. 285–304. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2016

Authors and Affiliations

  • Michael Backes
    • 1
    • 2
  • Sebastian Meiser
    • 1
    Email author
  • Dominique Schröder
    • 1
  1. 1.CISPASaarland UniversitySaarbrückenGermany
  2. 2.MPI-SWSKaiserslauternGermany

Personalised recommendations