ALMM Solver for Combinatorial and Discrete Optimization Problems – Idea of Problem Model Library

  • Ewa Dudek-Dyduch
  • Sławomir Korzonek
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9621)


The paper presents results of further research on a software tool named ALMM Solver. The objective of the ALMM Solver is to solve combinatorial and discrete optimization problems including NP-hard problems.

The solver utilizes a modeling paradigm named Algebraic Logical Meta Model of Multistage Decision Processes (ALMM of MDP) and its theory.

The ALMM of MDP enables a unified approach to creating discrete optimization problem models and representing knowledge about these problems. The models are stored in a Problem Model Library.

A new, extended modular structure of the ALMM Solver is presented together with a basic layout of the Problem Model Library.


Solver Optimizer Algebraic-Logical Meta-Model (ALMM) Multistage decision process Discrete optimization problems Scheduling problem Software tool Library of models 


  1. 1.
    Błażewicz, J., Ecker, K., Pesch, E., Schmidt, G., Węglarz, J.: Handbook on Scheduling. Springer, Berlin (2007). ISBN 978-3-540-28046-0zbMATHGoogle Scholar
  2. 2.
    Dudek-Dyduch, E.: Information Systems for Production Management (in Polish) Wyd. Poldex, Kraków (2002). ISBN 83-88979-12-4Google Scholar
  3. 3.
    Dudek-Dyduch, E.: Learning based algorithm in scheduling. J. Intell. Manufact. (JIM) 11(2), 135–143 (2000). (accepted to be published 1998)CrossRefGoogle Scholar
  4. 4.
    Dudek-Dyduch, E.: Discrete determinable processes - compact knowledge-based model. Notas de Matematica No 137, Universidad de Los Andes, Merida, Venezuela (1993)Google Scholar
  5. 5.
    Dudek-Dyduch, E.: Problems of knowledge representation in expert system aided control of DPP (in Polish) Inżynieria Wiedzy i Systemy Ekspertowe, Prace II Krajowej Konferencji, tom I, pp. 147–154. Politechnika Wrocławska, Wrocław (1993)Google Scholar
  6. 6.
    Dudek-Dyduch, E.: Control of discrete event processes - branch and bound method. In: Proceedings of IFAC/Ifors/Imacs Symposium Large Scale Systems: Theory and Applications, Chinese Association of Automation, vol. 2, pp. 573–578 (1992)Google Scholar
  7. 7.
    Dudek-Dyduch, E.: Formalization and analysis of problems of discrete manufacturing processes. Scientific Bulletin of AGH University, Automatics, vol. 54 (1990) (in Polish). ISSN 0454-4773Google Scholar
  8. 8.
    Dudek-Dyduch, E.: Algebraic logical meta-model of decision processes - new metaheuristics. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015. LNCS, vol. 9119, pp. 541–554. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  9. 9.
    Dudek-Dyduch, E.: Modeling manufacturing processes with disturbances - a new method based on algebraic-logical meta-models. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015. LNCS, vol. 9120, pp. 353–363. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  10. 10.
    Dudek-Dyduch, E.: Modeling manufacturing processes with disturbances – two-stage AL model transformation method. In: 20th International Conference on Methods and Models in Automation and Robotics, MMAR proceedings, pp. 782–787 (2015)Google Scholar
  11. 11.
    Dudek-Dyduch, E., Dutkiewicz, L.: Substitution tasks method for discrete optimization. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part II. LNCS, vol. 7895, pp. 419–430. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. 12.
    Dudek-Dyduch, E., Dyduch, T.: Formal approach to optimization of discrete manufacturing processes. In: Hamza, M.H. (ed.) Proceedings of the Twelfth IASTED International Conference Modelling, Identification and Control. Acta Press, Zurich (1993)Google Scholar
  13. 13.
    Dudek-Dyduch, E., Kucharska, E.: Learning method for co-operation. In: Jędrzejowicz, P., Nguyen, N.T., Hoang, K. (eds.) ICCCI 2011, Part II. LNCS, vol. 6923, pp. 290–300. Springer, Heidelberg (2011)Google Scholar
  14. 14.
    Dudek-Dyduch, E., Kucharska, E.: Optimization learning method for discrete process control. In: ICINCO 2011, vol. 1, pp. 24–33 (2011)Google Scholar
  15. 15.
    Dudek-Dyduch, E., Kucharska, E., Dutkiewicz, L., Rączka, K.: ALMM Solver - A Tool for Optimization Problems. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part II. LNCS, vol. 8468, pp. 328–338. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  16. 16.
    Dutkiewicz, L., Dudek-Dyduch, E.: Substitution tasks method for co-operation. In: Badica, A., Trawinski, B., Nguyen, N.T. (eds.) Recent Developments in Computational Collective Intelligence. SCI, vol. 513, pp. 103–113. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  17. 17.
    Jędrzejowicz, P., Ratajczak-Ropel, E.: Reinforcement learning strategy for solving the MRCPSP by a team of agents. In: Neves-Silva, R., Jain, L.C., Howlett, R.J. (eds.) IDT 2015. SIST, vol. 39, pp. 537–548. Springer, Heidelberg (2015)Google Scholar
  18. 18.
    Kucharska, E., Dudek-Dyduch, E.: Extended learning method for designation of co-operation. In: Nguyen, N.T. (ed.) TCCI XIV 2014. LNCS, vol. 8615, pp. 136–157. Springer, Heidelberg (2014)Google Scholar
  19. 19.
    Ligęza, A.: Improving efficiency in constraint logic programming through constraint modeling with rules and hypergraphs. In: Federated Conference on Computer Science and Information Systems, pp. 101–107. IEEE Computer Society Press (2012)Google Scholar
  20. 20.
    Metsker, S.J.: Design Patterns in C#. Addison Wesley, Boston (2004). ISBN 0-321-12697-1Google Scholar
  21. 21.
    Pinedo, M.L.: Scheduling: Theory, Algorithms and Systems. Springer, Berlin (2012)CrossRefzbMATHGoogle Scholar
  22. 22.
    Rączka, K., Dudek-Dyduch, E., Kucharska, E., Dutkiewicz, L.: ALMM solver: the idea and the architecture. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015, Part II. LNCS, vol. 9120, pp. 504–514. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  23. 23.
    Rossi, F., Van Beek, P., Walsh, T.: Handbook of Constraint Programming. Elsevier, Amsterdam (2006)zbMATHGoogle Scholar
  24. 24.
    Smith, R.E., Taylor, N.: A framework for evolutionary computation in agent-based systems. In: Looney, C., Castaing, J. (eds.) Proceedings of the 1998 International Conference on Intelligent Systems, pp. 221–224. ISCA Press (1998)Google Scholar
  25. 25.
    OMG: Unified Modeling Language Version 2.5.

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Automatics and Biomedical EngineeringAGH University of Science and TechnologyKrakówPoland
  2. 2.Advanced Technology Systems InternationalZabierzówPoland

Personalised recommendations