Towards the Tradeoff Between Online Marketing Resources Exploitation and the User Experience with the Use of Eye Tracking

  • Jarosław JankowskiEmail author
  • Paweł Ziemba
  • Jarosław Wątróbski
  • Przemysław Kazienko
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9621)


Online systems are often overloaded with marketing content and as a result, perceived intrusiveness negatively affects the user experience and the evaluation of the website. Intentional and unintentional avoidance of the commercial content creates the need for compromise solutions from both the perspective of user experience and business goals. The presented research shows a unique approach to search for tradeoffs between the editorial content and the intensity of marketing components with the use of eye tracking and the multiple-criteria decision analysis methods.


User experience Online marketing Marketing exploitation Eye tracking HCI 



The work was partially supported by European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no. 316097 [ENGINE] and by the National Science Centre, the decision no. DEC-2013/09/B/ST6/02317.


  1. 1.
    Ha, L., McCann, K.: An integrated model of advertising clutter in offline and online media. Int. J. Advertising 27(4), 569–592 (2008)CrossRefGoogle Scholar
  2. 2.
    Brajnik, G., Gabrielli, S.: A review of online advertising effects on the user experience. Int. J. Hum. Comput. Interact. 26(10), 971–997 (2010)CrossRefGoogle Scholar
  3. 3.
    Gibbs, W.: Examining users on news provider web sites: a review of methodogy. J. Usability Stud. 3, 129–148 (2008)Google Scholar
  4. 4.
    McCoy, S., Everard, A., Polak, P., Galletta, D.F.: The effects of online advertising. Commun. ACM 50(3), 84–88 (2007)CrossRefGoogle Scholar
  5. 5.
    Hairong, E., Edwards, S.M., Joo-Huyn, L.: Measuring the intrusiveness of advertisements: scale development and validation. J. Advertising 31(2), 37–47 (2002)CrossRefGoogle Scholar
  6. 6.
    Moe, W.W.: A field experiment to assess the interruption effect of pop-up promotions. J. Interact. Mark. 20(1), 34–44 (2006)CrossRefGoogle Scholar
  7. 7.
    Goldstein, D.G., McAfee, R.P., Suri, S.: The cost of annoying ads. In: Proceedings of the 22nd International Conference on World Wide Web (WWW 2013), International World Wide Web Conferences Steering Committee, pp. 459–470. Republic and Canton of Geneva, Switzerland (2013)Google Scholar
  8. 8.
    Ha, L., Litman, B.R.: Does advertising clutter have diminishing and negative returns? J. Advertising 26(1), 31–42 (1997)CrossRefGoogle Scholar
  9. 9.
    Rosenkrans, G.: The creativeness and efectiveness of online interactive rich media advertising. J. Interact. Advertising 9(2), 18–31 (2009)CrossRefGoogle Scholar
  10. 10.
    Burke, M., Hornof, A., Nilsen, E., Gorman, N.: High cost banner blindness: ads increase perceived workload hinder visual search and are forgotten. ACM Trans. Comput. Hum. Interact. 12(4), 423–445 (2005)CrossRefGoogle Scholar
  11. 11.
    Benway, J.P., Lane, D.M.: Banner blindness: web searchers often miss “obvious” links (1998).
  12. 12.
    Krammer, V.: An effective defense against intrusive web advertising. In: Proceedings of the 2008 Sixth Annual Conference on Privacy, Security and Trust (PST 2008), pp. 3–14. IEEE Computer Society, Washington, USA (2008)Google Scholar
  13. 13.
    Chatterjee, P.: Are unclicked ads wasted? Enduring effects of banner and pop-up ad exposures on brand memory and attitudes. J. Electron. Commer. Res. 9(10), 51–61 (2008)Google Scholar
  14. 14.
    Jankowski, J.: Modeling the structure of recommending interfaces with adjustable influence on users. In: Selamat, A., Nguyen, N.T., Haron, H. (eds.) ACIIDS 2013, Part II. LNCS, vol. 7803, pp. 429–438. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  15. 15.
    Jankowski, J.: Balanced approach to the design of conversion oriented websites with limited negative impact on the users. In: Bǎdicǎ, C., Nguyen, N.T., Brezovan, M. (eds.) ICCCI 2013. LNCS, vol. 7803, pp. 527–536. Springer, Heidelberg (2013)Google Scholar
  16. 16.
    Jankowski, J.: Increasing website conversions using content repetitions with different levels of persuasion. In: Selamat, A., Nguyen, N.T., Haron, H. (eds.) ACIIDS 2013, Part II. LNCS, vol. 7803, pp. 439–448. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  17. 17.
    Lang, A.: The limited capacity model of mediated message processing. J. Commun. 50(1), 46–70 (2000)CrossRefGoogle Scholar
  18. 18.
    Zha, W., Wu, H.D.: The impact of online disruptive ads on users’ comprehension evaluation of site credibility and sentiment of intrusiveness. Am. Commun. J. 16(2), 15–28 (2014)Google Scholar
  19. 19.
    Andrew, Y.T., Kim, D.J.: A comparative analysis of online social networking sites and their business models. E-marketing: Concepts, Methodologies, Tools and Applications, pp. 803–813. IGI Global Publications, Hershey (2012). doi: 10.4018/978-1-4666-1598-4.ch048 Google Scholar
  20. 20.
    Lai, V.S., Wong, B.K.: Business types e-strategies and performance. Commun. ACM 48(5), 80–85 (2005)CrossRefGoogle Scholar
  21. 21.
    Brans, J.P., Mareschal, B.: Promethee methods. In: Figueira, J., Greco, S., Ehrgott, M. (eds.) Multiple Criteria Decision Analysis, pp. 163–195. Springer, Boston (2005)Google Scholar
  22. 22.
    Brans, J.P., Vincke, P.: A preference ranking organisation method: (the Promethee method for multiple criteria decision-making). Manag. Sci. 31, 647–656 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Behzadian, M., Kazemzadeh, R.B., Albadvi, A., Aghdasi, M.: PROMETHEE: a comprehensive literature review on methodologies and applications. Eur. J. Oper. Res. 200, 198–215 (2010)CrossRefzbMATHGoogle Scholar
  24. 24.
    Ghafghazi, S., Sowlati, T., Sokhansanj, S., Melin, S.: A multicriteria approach to evaluate district heating system options. Appl. Energy 87, 1134–1140 (2010)CrossRefGoogle Scholar
  25. 25.
    Roy, B.: Multicriteria Methodology for Decision Aiding. Springer, Dordrecht (1996)CrossRefzbMATHGoogle Scholar
  26. 26.
    Roy, B.: Paradigms and challenges. In: Figueira, J., Greco, S., Ehrgott, M. (eds.) Multiple Criteria Decision Analysis: State of the Art Surveys, pp. 3–24. Springer, Boston (2005)CrossRefGoogle Scholar
  27. 27.
    Deshmukh, S.C.: Preference ranking organization method of enrichment evaluation (Promethee). Int. J. Eng. Sci. Invention 2(11), 28–34 (2013)Google Scholar
  28. 28.
    Roy, B.: The outranking approach and the foundations of ELECTRE methods. In: Bana e Costa, C.A. (ed.) Readings in Multiple Criteria Decision Aid, pp. 155–183. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  29. 29.
    Amponsah, S.K., Darkwah, K.F., Inusah, A.: Logistic preference function for preference ranking organization method for enrichment evaluation (PROMETHEE) decision analysis. Afr. J. Math. Comput. Sci. Res. 5(6), 112–119 (2012)CrossRefGoogle Scholar
  30. 30.
    Podvezko, V., Podviezko, A.: Dependence of multi-criteria evaluation result on choice of preference functions and their parameters. Technol. Econ. Dev. Econ. 16(1), 143–158 (2010)CrossRefGoogle Scholar
  31. 31.
    Podvezko, V., Podviezko, A.: Use and choice of preference functions for evaluation of characteristics of socio-economical processes. In: 6th International Scientific Conference on Business and Management, Vilnius, pp. 1066–1071 (2010)Google Scholar
  32. 32.
    Macharis, C., Brans, J.P., Mareschal, B.: The GDSS PROMETHEE procedure. J. Decis. Syst. 7, 283–307 (1998)Google Scholar
  33. 33.
    Mareschal, B., Brans, J.P.: Geometrical representations for MCDA. Eur. J. Oper. Res. 34, 69–77 (1988)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Saltelli, A., Tarantola, S., Chan, K.: A role for sensitivity analysis in presenting the results from MCDA studies to decision makers. J. Multi-Criteria Decis. Anal. 8, 139–145 (1999)CrossRefzbMATHGoogle Scholar
  35. 35.
    Janssens, G.K., Pangilinan, J.M.: Multiple criteria performance analysis of non-dominated sets obtained by multi-objective evolutionary algorithms for optimisation. In: Papadopoulos, H., Andreou, A.S., Bramer, M. (eds.) AIAI 2010. IFIP AICT, vol. 339, pp. 94–103. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  36. 36.
    Kazienko, P., Adamski, M.: AdROSA - adaptive personalization of web advertising. Inf. Sci. 177(11), 2269–2295 (2007)CrossRefGoogle Scholar
  37. 37.
    Sałabun, W.: The characteristic objects method: a new distance-based approach to multicriteria decision-making problems. J. Multi-Criteria Decis. Anal. 22(1–2), 37–50 (2015)CrossRefGoogle Scholar
  38. 38.
    Piegat, A., Sałabun, W.: Identification of a multicriteria decision-making model using the characteristic objects method. Appl. Comput. Intell. Soft Comput. (2014)Google Scholar
  39. 39.
    Wątróbski, J., Jankowski, J., Piotrowski, Z.: The selection of multicriteria method based on unstructured decision problem description. In: Hwang, D., Jung, J.J., Nguyen, N.-T. (eds.) ICCCI 2014. LNCS, vol. 8733, pp. 454–465. Springer, Heidelberg (2014)Google Scholar
  40. 40.
    Ziemba, P., Piwowarski, M., Jankowski, J., Wątróbski, J.: Method of criteria selection and weights calculation in the process of web projects evaluation. In: Hwang, D., Jung, J.J., Nguyen, N.-T. (eds.) ICCCI 2014. LNCS, vol. 8733, pp. 684–693. Springer, Heidelberg (2014)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Jarosław Jankowski
    • 1
    • 3
    Email author
  • Paweł Ziemba
    • 2
  • Jarosław Wątróbski
    • 3
  • Przemysław Kazienko
    • 1
  1. 1.Department of Computational IntelligenceWrocław University of TechnologyWrocławPoland
  2. 2.The Jacob of Paradyż University of Applied Sciences in Gorzów WielkopolskiGorzów WielkopolskiPoland
  3. 3.West Pomeranian University of TechnologySzczecinPoland

Personalised recommendations