Advertisement

Teilprojekt TP 4 – Interaktion

  • Rüdiger Mecke
Chapter

Zusammenfassung

Kap. 6 stellt Forschungsansätze zur Verbesserung der Interaktion mit virtuellen Modellen vor. Es werden Ansätze zur Vereinfachung der Kalibrierung von Durchsichtbrillen für Augmented-Reality-Überlagerungen vorgestellt. Neuartige Interaktionstechniken werden am Beispiel einer taktilen Haut, durch Einsatz von sogenannten berührbaren Interaktionsgeräten und anhand von bildbasierter Interaktion demonstriert.

Literatur

  1. 1.
    Myers, B.A.: User-interface Tools: Introduction and Survey. IEEE Software, 6, 1 (1989), 15–23.Google Scholar
  2. 2.
    Bowman, D.A.; Kruijff, E.; LaViola Jr.; J.J.; Poupyrev, I.: 3D User Interfaces: Theory and Practice. Addison-Wesley, Reading, Massachusetts, 2005.Google Scholar
  3. 3.
    Bowman, D.A.; Hodges, L.F.: An evaluation of techniques for grabbing and manipulating remote objects in immersive virtual environments. In Proc. Symposium on Interactive 3D graphics, Providence, Rhode Island, USA (1997), 35–38.Google Scholar
  4. 4.
    Poupyrev, I.; Billinghurst, M.; Weghorst, S; Ichikawa, T.: Go-Go interaction technique: Non-linear mapping for direct manipulation. In Proc. User interface software and technology UIST’96, (1996), 79–80.Google Scholar
  5. 5.
    Pierce, J.; Stearns, B.; Pausch, R.: Voodoo dolls: seamless interaction at multiple scales in virtual environments. In Proc. Symposium on interactive 3D graphics, Atlanta, GA, USA (1999), 141–145.Google Scholar
  6. 6.
    Immersion Corp. 3D-Interaction product line. http://www.immersion.com/3D/, 2007.
  7. 7.
    Hurmuzlu, Y.; Ephanov, A.; Stoianovici, D.: Effect of a Pneumatically Driven Haptic Interface on the Perceptional Capabilities of Human Operators. Presence, MIT Press, Vol. 7, No. 3, 1998, S. 290–307.Google Scholar
  8. 8.
    Van der Linde, R. Q.; Lammertse, P.; Frederiksen, E.; Ruiter. B.: The HapticMaster, a new high-performance haptic interface. In Proceedings: EuroHaptics, Edinburgh, 2002, S. 1–5.Google Scholar
  9. 9.
    Massie, T.; Salisbury, K.: The PHANToM Haptic Interface: A Device for Probing Virtual Objects. In Proceedings of ASME WAM, DSC-Vol. 55-1, 1994, S. 295–300.Google Scholar
  10. 10.
    Walairacht, S.; Yamada, K.; Hasegawa, S.; Koike, Y.; Sato, M.: 4 + 4 fingers manipulating virtual objects in mixed-reality environment. Presence: Teleoperators and Virtual Environments 11, 2 (2002), 143–143.Google Scholar
  11. 11.
    Kurillo, G.; Mihelj, M.; Munih, M.; Bajd, T.: Grasping and manipulation in virtual environment using 3By6 finger device. In Proc. 9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005, (2005), 131–134.Google Scholar
  12. 12.
    Yamamoto, A.; Nagasawa, S.; Yamamoto, H.; Higuchi, T.: Electrostatic Tactile Display with Thin Film Slider and Its Application to Tactile Tele-Presentation Systems. In HIGUCHI Proc. of the ACM Symposium on Virtual Reality Software and Technology (VRST), 2004, S. 209–216.Google Scholar
  13. 13.
    Scheibe, R.; Moehring, M.; Froehlich, B.: Tactile Feedback at the Finger Tips for Improved Direct Interaction in Immersive Environments. In Proc. IEEE Virtual Reality Conference, (2007), 293–294.Google Scholar
  14. 14.
    Insko, B. E.: Passive Haptics Significantly Enhances Virtual Environments. Ph.D. Thesis, Dept. of Computer Science, University of North Carolina at Chapel Hill, 2001.Google Scholar
  15. 15.
    Hummels, C. C. M.: Gestural design tools: prototypes, experiments and scenarios. University of Technology, Delft, 2000.Google Scholar
  16. 16.
    Buecher, Robert: Wearable mobile display based on the human physiology to set new standards for human machine interfaces. In: The 22nd Digital Avionics Systems Conference, Band 2, Seiten 9.E.4.1–9.E.4.4, 2003.Google Scholar
  17. 17.
    Swan, J. Edward II; Gabbard, Joseph L.: Survey of User-Based Experimentation in Augmented Reality. In: Proceedings 1st International Conference on Virtual Reality. Las Vegas, USA, 2005.Google Scholar
  18. 18.
    Azuma, Ronald; Baillot, Yohan; Behringer, Reinhold; Feiner, Steven; Julier, Simon; Macintyre, Blair: Recent advances in augmented reality. In: Computer Graphics and Applications 21 (2001), November, Nr. 6, S. 34–47.Google Scholar
  19. 19.
    Jens Grubert; Daniel Hamacher; Rüdiger Mecke; Irina Böckelmann; Luzt Schega; Anke Huckauf; Mario H. Urbina; Michael Schenk; Fabian Doil; and Johannes Tümler: Extended Investigations of User-Related Issues in Mobile Industrial Augmented Reality. In Proceedings of the Ninth IEEE International Symposium on Mixed and Augmented Reality (IEEE ISMAR 2010). October 13–16, 2010.Google Scholar
  20. 20.
    Alt, Thomas: Augmented Reality in der Produktion, Otto von-Guericke Universität Magdeburg, Fakultät für Maschinenbau und Volkswagen AG Wolfsburg, Dissertation, 2002.Google Scholar
  21. 21.
    Tümler, Johannes; Mecke, Rüdiger; Xu, Jian: See-Through Kalibrierverfahren für mobile Augmented Reality Assistenzsysteme. In: Gausemeier, Jürgen und Grafe, Michael (Herausgeber): Augmented und Virtual Reality in der Produktentstehung, Band 6, Seiten 233–247. Heinz Nixdorf Institut, Universität Paderborn, HNI-Verlagsschriftenreihe, 2007.Google Scholar
  22. 22.
    Mitra, S.; Acharya, T.: Gesture Recognition: A Survey, Systems, Man and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, Volume 37, Issue 3, May 2007 Page(s): 311–324.Google Scholar
  23. 23.
    Turk, M.; Pentland, A.: “Eigenfaces for recognition,” J. Cogn. Neurosci., vol. 3, S. 71–86, 1991.Google Scholar
  24. 24.
    Peixoto, P.; Goncalves, J.; Araujo, H., Real-time gesture recognition system based on contour signatures, Pattern Recognition, 2002. Proceedings. 16th International Conference on, Volume 1, 11–15 Aug. 2002 Page(s): 447–450 vol.1.Google Scholar
  25. 25.
    Yoon, H. S.; Soh, J.; Bae, Y. J.; Yang, H. S.: “Hand gesture recognition using combined features of location, angle and velocity,” Pattern Recogn., vol. 34, S. 1491–1501, 2001.Google Scholar
  26. 26.
    De Luca, Alessandro; Albu-Schäffer, Alin; Haddadin, Sami; Hirzinger, Gerhard (2006): Collision Detection and Safe Reaction with the DLR-III Lightweight Manipulator Arm. In: Proceedings IROS 2006, S. 1623 - 1630, IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 2006-10-09–2006-10-15.Google Scholar
  27. 27.
    Webster, J.G.: Tactile sensors for robotics and medicine. New York: Wiley, 1988.Google Scholar
  28. 28.
    Nicholls, H. R.: Advanced tactile sensing for robotics. Singapore: World Scientific, 1992.Google Scholar
  29. 29.
    Lumelsky, V.: Sensitive skin. Singapore: World Scientific, 2000.Google Scholar
  30. 30.
    Iwata, H.; Sugano, S.: “Whole-body covering tactile interface for human robot coordination”, in Robotics and Automation, 2002. Proceedings. ICRA ‘02. IEEE International Conference on, 2002, S. 3818–3824 vol.4.Google Scholar
  31. 31.
    Asfour, T.; Regenstein, K.; Azad, P.; Schröder, J.; Dillmann, R.: “ARMAR-III: A Humanoid Platform for Perception-Action Integration”, Proceedings of 2nd International Workshop on Human-Centered Robotic Systems, 2006.Google Scholar
  32. 32.
    Ohmura, Y.; Kuniyoshi, Y.; Nagakubo, A.: “Conformable and scalable tactile sensor skin for curved surfaces”, in Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference on, 2006, S. 1348–1353.Google Scholar
  33. 33.
    Cannata, G.; Maggiali, M.; Metta, G.; Sandini, G.: “An embedded artificial skin for humanoid robots”, in Multisensor Fusion and Integration for Intelligent Systems, 2008. MFI 2008. IEEE International Conference on, 2008, S. 434–438.Google Scholar
  34. 34.
    Heiligensetzer, P.: Sichere Mensch-Roboter-Kooperation durch Fusion haptischer und kapazitiver Sensorik, Univ., Diss–Karlsruhe, 2003. Berichte aus der Robotik. Aachen: Shaker, 2003.Google Scholar
  35. 35.
    Grubert, J.: Untersuchungen zur See-Through-Kalibrierung für Optical-See-Through-Displays. Diploma Thesis, Magdeburg, 2009.Google Scholar
  36. 36.
    Tuceryan, M.; Genc, Y.; Navab, N.: Single-Point active alignment method (SPAAM) for optical see-through HMD calibration for augmented reality. Presence: Teleoper. Virtual Environ., 11(3):259–276, 2002, ISSN 1054-7460.Google Scholar
  37. 37.
    Tuceryan, M.; Navab, N.: Single point active alignment method (SPAAM) for optical see-through HMD calibration for AR. Augmented Reality, International Symposium on, 0:149, 2000.Google Scholar
  38. 38.
    Feiner, S.; Blair M.; Dorée, S.: Knowledge-based augmented reality. In: Communications of the ACM, Band 36, Seiten 53–62. ACM, New York, NY, USA, 1993.Google Scholar
  39. 39.
    Janin, A.; Mizell, D.; Caudell, T.: Calibration of head-mounted displays for augmented reality applications. In: Proceedings of the Virtual Reality Annual International Symposium (VRAIS’93).Google Scholar
  40. 40.
    Owen, C.; Zhou, J.; Tang, A.; Xiao, F.: Display-Relative Calibration for Optical See-Through Head-Mounted Displays. In: ISMAR ’04: Proceedings of the 3rd IEEE/ACM International Symposium on Mixed and Augmented Reality, Seiten 70–78, Washington, DC, USA, 2004. IEEE Computer Society, ISBN 0-7695-2191-6.Google Scholar
  41. 41.
    McGarrity, E.; Genc, Y.; Tuceryan, M.; Owen, C.; Navab, N.: A New System for Online Quantitative Evaluation of Optical See-Through Augmentation. In: Proceedings of the IEEE and ACM International Symposium on Augmented Reality, Seiten 157–166, 2001.Google Scholar
  42. 42.
    McGarrity, E.; Genc, Y.; Navab, N.; Tuceryan, M.; Owen, C.: Evaluation of Calibration for Optical See-Through Augmented Reality Systems. In: Euroimage International Conference on Augmented, Virtual Environments and Three-Dimensional Imaging (ICAV3D), Mykonos, Greece, 2001.Google Scholar
  43. 43.
    Navab, N.; Zokai, S.; Genc, Y.; Coelho, E. M.: An On-line Evaluation System for Optical See-through Augmented Reality. In: VR ’04: Proceedings of the IEEE Virtual Reality 2004, Seite 245, Washington, DC, USA, 2004. IEEE Computer Society, ISBN 0-7803-8415-6.Google Scholar
  44. 44.
    Suthau, T.: Augmented Reality - Positionsgenaue Einblendung räumlicher Informationen in einem See Through Head Mounted Display für die Medizin am Beispiel der Leberchirurgie. Dissertation, Institut für Geodäsie und Geoinformationstechnik Fakultät VI – Planen Bauen Umwelt Technische Universität Berlin, 2006.Google Scholar
  45. 45.
    Lucas, B. D.; Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proceedings of Imaging Understanding Workshop, Seiten 121–130, 1981.Google Scholar
  46. 46.
    Grubert, J.; Tümler, J.; Mecke R.; Schenk, M.: Comparative User Study of two See-through Calibration Methods. In: Proceedings of the IEEE Virtual Reality Conference 2010 (VR 2010). 20.–24. März, 2010, Waltham, Massachusetts, USA.Google Scholar
  47. 47.
    Grubert, J.; Tümler, J.; Mecke, R.: Optimierung der See-Through-Kalibrierung für mobile Augmented-Reality-Assistenzsysteme. In: 12. IFF-Wissenschaftstage: Digitales Engineering und virtuelle Techniken zum Planen, Testen und Betreiben technischer Systeme. Fraunhofer Institut für Fabrikbetrieb und Automatisierung IFF. 16.–18. Juni, 2009, Magdeburg. Fraunhofer IRB Press Stuttgart. ISBN 978-3-8396-0023-8.Google Scholar
  48. 48.
    Tümler, J.: Untersuchungen zu nutzerbezogenen und technischen Aspekten beim Langzeiteinsatz mobiler Augmented Reality Systeme in industriellen Anwendungen. Dissertation. Fakultät für Informatik der Otto-von-Guericke-Universität Magdeburg. 2009.Google Scholar
  49. 49.
    Anderson, D.: Ansatz zur Rekalibrierung von Optical-See-Through-Displays mittels berührungsloser Sensorik. Studienarbeit. Fakultät für Elektrotechnik und Informationstechnik der Otto-von-Guericke-Universität Magdeburg. 2009.Google Scholar
  50. 50.
    Shimojo, M.; Sato, S.; Seki, Y.; Takahashi, A.: “A system for simultaneous measuring grasping posture and pressure distribution,” in Proc. IEEE Int. Conf. Robotics and Automation, Nagoya, Japan, 1995, S. 831–836.Google Scholar
  51. 51.
    Ishikawa, M.; Shimojo, M.: “An imaging tactile sensor with video output and tactile image processing,” in Trans. SICE, vol. 24, 1988, S. 662–669.Google Scholar
  52. 52.
    Snyder, W. E.; Clair, J. S. T.: “Conductive elastmers as sensor for industrial parts handling equipment,” IEEE Trans. Instrum. Meas., S. 94–99, Feb. 1978.Google Scholar
  53. 53.
    Kanaya, K.; Ishikawa, M.: “Tactile imaging system and its application,” in Proc. SOBIM, vol. 13, 1989, S. 45–48.Google Scholar
  54. 54.
    Purbrick, J. A.: “A force tranducer employing conductive silicone rubber,” in Proc. 1st Int. Conf. Robot Vision and Sensory Controls, 1981, S. 73–80. SOBIM, Vol. 13, no. 1, S. 45–48, 1989.Google Scholar
  55. 55.
    Hillis, W. D.: “A high-resolution imaging touch sensor,” Int. J. Robot. Res., vol. 1, no. 2, S. 33–44, 1982.Google Scholar
  56. 56.
    Bowman, D. A.; Kruijff, E.; LaViola Jr.; J. J.; Poupyrev, I.: 3D User Interfaces: Theory and Practice. Reading, Massachusetts: Addison-Wesley, 2005.Google Scholar
  57. 57.
    Smeets, J.; Brenner, E.: A new view on grasping. Mot Control 3, 237–371, 1999.Google Scholar
  58. 58.
    Hacker, W.; Innovationsmanagement der frühen Phasen der Produktentwicklung: Stärkung des “intellektuellen Kapitals” (Beilage zum Tagungsband). In: Tagungsband XII. Internationales Produktionstechnisches Kolloquium (PTK 2007): Nachhaltigkeit in der Produktionswirtschaft, Erfolgreich produzieren im globalen Umfeld. Berlin, Fraunhofer IPK, 121 (Abstract), 1–8 (Beilage), Seite 10, 2007.Google Scholar
  59. 59.
    Ishii, H.; Ullmer, B.: Tangible bits: towards seamless interfaces between people, bits, and atoms. In: Tagungsband CHI’97. Atlanta, Georgia, 234–241, 1997.Google Scholar
  60. 60.
    Ishii, H.: Tangible Bits: Beyond Pixels. In: Schmidt, A., Gellersen, H., Hoven, E. v. d.et al. (Hrsg.) Tagungsband Second International Conference on Tangible and Embedded Interaction (TEI’08). Bonn, Germany, ACM Press, XV–XXV, 2008.Google Scholar
  61. 61.
    Dourish, P.: Where the Action Is: The Foundations of Embodied Interaction. Cambridge: MIT Press, 2001.Google Scholar
  62. 62.
    Hornecker, E. & Buur, J.: Getting a Grip on Tangible Interaction: A Framework on Physical Space and Social Interaction. In: Tagungsband CHI 2006. ACM Press, 437–446, 2006.Google Scholar
  63. 63.
    Norman, D. A.: The Psychology of Everyday Things. New York: Basic Books, 1988.Google Scholar
  64. 64.
    Norman, D. A.: The Design of Everyday Things. New York: Currency/Doubleday, 1990.Google Scholar
  65. 65.
    Fjeld, M.; Bichsel, M.; Rauterberg, M.: BUILD-IT: Intuitive plant layout mediated by natural interaction. Arbete Människa Miljö & Nordisk Ergonomi (Work, Human being, Environment) 1/99, 49–56, 1999.Google Scholar
  66. 66.
    Sharlin, E.; Watson, B.; Kitamura, Y.; Kishino, F.; Itoh, Y.: On tangible user interfaces, humans and spatiality. Personal and Ubiquitous Computing 8(5), 338–346, 2004.Google Scholar
  67. 67.
    Jacob, R. J. K.; Girouard, A.; Hirshfield, L. M.; Horn, M. S.; Shaer, O.; Solovey, E. T.; Zigelbaum, J.: Reality-Based Interaction: A Framework for Post-WIMP Interfaces. In: Tagungsband CHI. Florenz, Italien, ACM Press, 201–210, 2008.Google Scholar
  68. 68.
    Israel, J. H.; Hurtienne, J.; Pohlmeyer, A. E.; Mohs, C.; Kindsmüller, M. C.; Naumann, A.: On intuitive use, physicality and tangible user interfaces. Int. Journal Arts and Technology 2(4), 348–366, 2009.Google Scholar
  69. 69.
    ISO-13407: Human-centred design processes for interactive systems. Geneva, Switzerland: International Organization for Standardization (ISO), 1999.Google Scholar
  70. 70.
    Völlinger, U.; Beckmann-Dobrev, B.; Schäfer, J.; Israel, J. H.; Stark, R.: Intuitive Haptische Interfaces für die Deformationssimulation. In: Gausemeier, J. & Grafe, M. (Hrsg.) Tagungsband 8. Paderborner Workshop Augmented & Virtual Reality in der Produktentstehung. Paderborn, Heinz Nixdorf Institut, 189–203, 2009.Google Scholar
  71. 71.
    Völlinger, U.; Wewetzer, M.; Hausser, F.; Ley, A.: An Adaptive Multiresolutional Approach for Interactive Simulation of Cloth. In: Tagungsband IASTED Technology Conferences 2010. Acta Press, 2010.Google Scholar
  72. 72.
    Hassenzahl, M.; Burmeister, M.; Koller, F.: AttrakDiff: Ein Fragebogen zur Messung wahrgenommener hedonischer und pragmatischer Qualität. In: Ziegler, J. & Szwillus, G. (Hrsg.) Tagungsband Mensch & Computer 2003: Interaktion in Bewegung. Stuttgart, B. G. Teubner, 187–196, 2003.Google Scholar
  73. 73.
    Hassenzahl, M.: The Interplay of Beauty, Goodness and Usability in Interactive Products. Human-Computer Interaction 19, 319–349, 2004.Google Scholar
  74. 74.
    Israel, J. H.; Belaifa, O.; Gispen, A.; Stark, R.: An Object-centric Interaction Framework for Tangible Interfaces in Virtual Environments. In: Tagungsband Fifth international conference on Tangible, embedded, and embodied interaction ACM TEI’11. Fuchal, Portugal, ACM Press, 325–332, 2011.Google Scholar
  75. 75.
    Greenberg, S.; Fitchett, C.: Phidgets: easy development of physical interfaces through physical widgets. In: Tagungsband Symposium on User Interface Software and Technology UIST’01. Orlando, Florida ACM, 209–218, 2001.Google Scholar
  76. 76.
    Arduino: Prototyping Platform. Zugriff am 15. Jan. 2011 von http://www.arduino.cc/, 2011.
  77. 77.
    Ullmer, B.; Ishii, H.: Emerging frameworks for tangible user interfaces. In: Carroll, J. M. (Hrsg.) Human-computer interaction in the new millennium. Reading, Massachusetts, USA: Addison-Wesley. 579–601, 2011.Google Scholar
  78. 78.
    Dumas, B.; Lalanne, D.; Guinard, D.; Koenig, R.; Ingold, R.: Strengths and weaknesses of software architectures for the rapid creation of tangible and multimodal interfaces. In: Schmidt, A., Gellersen, H., Hoven, E. v. d. et al. (Hrsg.) Tagungsband TEI’08 Second International Conference on Tangible and Embedded Interaction. Bonn, ACM Press, 47–54, 2008.Google Scholar
  79. 79.
    Mazalek, A.: Tangible Toolkits: Integrating Application Development across Diverse Multi-User and Tangible Interaction Platforms. In: Tagungsband Let’s Get Physical Workshop, DCC’06. Eindhoven, 2006.Google Scholar
  80. 80.
    Shaer, O.; Jacob, R. J. K.: A specification paradigm for the design and implementation of tangible user interfaces. ACM Transactions on Computer-Human Interaction (TOCHI) 16(4), 1–39, 2009.Google Scholar
  81. 81.
    Shaer, O.; Leland, N.; Calvillo-Gamez, E. H.; Jacob, R. J. K.: The TAC paradigm: specifying tangible user interfaces. Personal and Ubiquitous Computing 8(5), 359–369, 2004.Google Scholar
  82. 82.
    Klemmer, S. R.; Li, J.; Lin, J.; Landay, J. A.: Papier-Mache: toolkit support for tangible input. In: Tagungsband Conference on Human Factors in Computing Systems. Vienna, ACM, 399–406, 2004.Google Scholar
  83. 83.
    Kaltenbrunner, M.; Bencina, R.: reacTIVision: A Computer-Vision Framework for Table-Based Tangible Interaction. In: Ullmer, B., Schmidt, A., Hornecker, E. et al. (Hrsg.) Tagungsband First international conference on Tangible and embedded interaction TEI’07. Baton Rouge, ACM Press, 69–74, 2007.Google Scholar
  84. 84.
    Reitmayr, G.; Schmalstieg, D.: An open software architecture for virtual reality interaction. In: Tagungsband Symposium on Virtual reality software and technology VRST’01. Baniff, Alberta, Canada, ACM, 47–54, 2001.Google Scholar
  85. 85.
    Billinghurst, M.; Kato, H.; Poupyrev, I.: MagicBook: Transitioning between Reality and Virtuality. IEEE Computer Grapics and Applications (May/June), 1–4, 2001.Google Scholar
  86. 86.
    Taylor, R. M.; Hudson, T. C.; Seeger, A.; Weber, H.; Juliano, J.; Helser, A. T.: VRPN: a device-independent, network-transparent VR peripheral system. In: Tagungsband Symposium on Virtual reality software and technology VRST’01. Baniff, Alberta, Canada, ACM, 55–61, 2001.Google Scholar
  87. 87.
    Ohlenburg, J.; Broll, W.; Lindt, I.: DEVAL – A Device Abstraction Layer for VR/AR. In: Universal Access in Human Computer Interaction. Coping with Diversity. Berlin, Heidelberg: Springer. 497–506, 2007.Google Scholar
  88. 88.
    Stark, R.; Israel, J. H.; Wöhler, T.: Towards hybrid modelling environments—Merging desktop-CAD and virtual reality-technologies. CIRP Annals – Manufacturing Technology 2010(59), 179–182, 2010.Google Scholar
  89. 89.
    Beyer, H.; Holtzblatt, K.: Contextual design: defining customer-centered systems. San Francisco, Calif.: Morgan Kaufmann, 1998.Google Scholar
  90. 90.
    Mayhew, D. J.: The usability engineering lifecycle: a practitioner’s handbook for user interface design. San Francisco, Calif.: Morgan Kaufmann Publishers, 1999.Google Scholar
  91. 91.
    Mateescu, M.: Sketching in Virtual Environments: Requirements Analysis of Tangible User Interfaces for Design. Technische Universität Berlin, 2009.Google Scholar
  92. 92.
    Mayring, P.: Qualitative Inhaltsanalyse. Grundlagen und Techniken. Aufl. 8. Weinheim: Deutscher Studien Verlag, 2003.Google Scholar
  93. 93.
    Phidgets. (2011) Interface-Kit. Zugriff am 16. Jan. 2011 von http://www.phidgets.com/.
  94. 94.
    Zöllner, C., Piatza, S., Müller, A. & Israel, J. H. (im Druck) Sketching in Space. In: Pre-Cursor. Berlin: Die Gestalten Verlag.Google Scholar
  95. 95.
    Wilson, F. R.: The hand. How it use shapes the brain, language, and human culture. New York: Pantheon Books, 1998.Google Scholar
  96. 96.
    Wiese, E.; Israel, J. H.; Zöllner, C.; Pohlmeyer, A. E.; Stark, R.: The Potential of Immersive 3D-Sketching Environments for Design Problem-Solving. In: Tagungsband 13th International Conference on Human-Computer Interaction HCI 2009. San Diego, CA, USA, 485–489, 2009.Google Scholar
  97. 97.
    Hart, S. G.; Staveland, L. E.: Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. In: Hancock, P. A. & Meshkati, N. (Hrsg.) In Human mental workload. Amsterdam: North-Holland. 139–183, 1988.Google Scholar
  98. 98.
    Israel, J. H.; Wiese, E.; Mateescu, M.; Stark, R.: Investigating three-dimensional sketching for early conceptual design—Results from expert discussions and user studies. Computers & Graphics 33(4), 462–473, 2009.Google Scholar
  99. 99.
    Israel, J. H.: Hybride Interaktionstechniken des immersiven Skizzierens in frühen Phasen der Produktentwicklung. Dissertation, Berlin: Technische Universität Berlin, 2010.Google Scholar
  100. 100.
    Wiese, E.; Israel, J. H.; Meyer, A.; Bongartz, S.: Investigating the Learnability of Immersive Free-Hand Sketching. In: Do, E. Y.-L. & Alexa, M. (Hrsg.) Tagungsband ACM SIGGRAPH/Eurographics Symposium on Sketch-Based Interfaces and Modeling SBIM’10. Annecy, France, ACM SIGGRAPH and the Eurographics Association, 135–142, 2010.Google Scholar
  101. 101.
    Perkunder, H.; Israel, J. H.; Alexa, M.: Shape Modeling with Sketched Feature Lines in Immersive 3D Environments. In: Do, E. Y.-L. & Alexa, M. (Hrsg.) Tagungsband ACM SIGGRAPH/Eurographics Symposium on Sketch-Based Interfaces and Modeling SBIM’10. Annecy, France, ACM SIGGRAPH and the Eurographics Association, 127–134, 2010.Google Scholar
  102. 102.
    Stark, R.; Beckmann-Dobrev, B.: Ein interdisziplinärer Ansatz zur multimodalen funktionalen Absicherung mechatronischer Systeme am Beispiel einer PKW-Heckklappe. In: Tagungsband 3. Grazer Symposium Virtuelles Fahrzeug Graz, 18–27, 2010.Google Scholar
  103. 103.
    Chen, J.; Bowman, D. A.: Domain-Specific Design of 3D Interaction Techniques: Designing Useful Virtual Environment Applications. Presence: Teleoperators and Virtual Environments 18(5), 370–386, 2009.Google Scholar
  104. 104.
    Mohr, D.; Zachmann, G.: “FAST: Fast Adaptive Silhouette Area based Template Matching,” in BMVC, 2010.Google Scholar
  105. 105.
    Lee, T.; Hollerer, T.: “Handy AR: Markerless Inspection of Augmented Reality Objects Using Fingertip Tracking,” in Proceedings of the 2007 11th IEEE International Symposium on Wearable Computers. IEEE Computer Society, 2007, S. 1–8.Google Scholar
  106. 106.
    Rehg, J.; Kanade, T.: “Visual tracking of high dof articulated structures: an application to human hand tracking.” Springer, 1994, S. 35–46.Google Scholar
  107. 107.
    Petersen, N.; Stricker, D.: “Fast hand detection using posture invariant constraints,” in KI 2009: Advances in Artificial Intelligence. Springer, 2009, S. 106–113.Google Scholar
  108. 108.
    Canny, J.: “A computational approach to edge detection,” Readings in computer vision: issues, problems, principles, and paradigms, vol. 184, S. 87–116, 1987.Google Scholar
  109. 109.
    Bradski, G.: “Computer vision face tracking for use in a perceptual user interface,” Intel Technology Journal, vol. 2, no. 2, 1998.Google Scholar
  110. 110.
    Petersen, N.; Stricker, D.: “Continuous natural user interface: Reducing the gap between real and digital world,” in Mixed and Augmented Reality, 2009. ISMAR 2009. 8th IEEE International Symposium on. IEEE, 2009, S. 23–26.Google Scholar
  111. 111.
    Pagani, A.; Stricker, D.: “Canaux projectifs intégraux pour la mise en correspondance de régions,” in ORASIS-Congrès des jeunes chercheurs en vision par ordinateur, 2009.Google Scholar
  112. 112.
    Pagani, A.; Stricker, D.; Felsberg, M.: “Integral P-channels for fast and robust region matching,”, In Image Processing (ICIP), 2009 16th IEEE International Conference on. IEEE, 2009, S. 213–216.Google Scholar
  113. 113.
    Pagani, A.; Stricker, D.: “Learning Local Patch Orientation with a Cascade of Sparse Regressors,” in Proceedings of the British Machine Vision Conference (BMVC 2009), London, UK, 2009.Google Scholar
  114. 114.
    Stenger, B.; Thayananthan, A.; Torr, P.; Cipolla, R.: “Model-based hand tracking using a hierarchical bayesian filter.” IEEE Computer Society, 2006, S. 1372–1384.Google Scholar
  115. 115.
    Meixner, G.; Petersen, N.; Koessling, H.: “User Interaction Evolution in the SmartFactoryKL”, In: Proceedings of the 24th BCS International Conference on Human-Computer Interaction, September 2010, Dundee, United Kingdom.Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland 2016

Authors and Affiliations

  1. 1.Fraunhofer-Institut für Fabrikbetrieb und -automatisierungMagdeburgDeutschland

Personalised recommendations