Bitsliced High-Performance AES-ECB on GPUs

  • Rone Kwei Lim
  • Linda Ruth Petzold
  • Çetin Kaya Koç
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9100)

Abstract

In order to perform high-performance Monte Carlo simulations of fracture in certain composite materials, we needed fast methods for generating deterministic random numbers. We made several design choices, and due to the fact that the entire simulation was to be done on both CPUs and GPUs, we designed new methods for fast implementation of the AES in the ECB mode on such architectures. This paper describes our algorithms and summarizes the performance results. In our implementation we were able to produce a speed of 78.6 Gbits per second on the GeForce GTX 480, which was 31–62 % faster than the fastest implementations reported in the recent literature on similar devices.

References

  1. 1.
    Bernstein, D.J., Schwabe, P.: New AES software speed records. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 322–336. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Bernstein, D.J.: Cache-timing attacks on AES (2005). https://cr.yp.to/antiforgery/cachetiming-20050414.pdf
  3. 3.
    Cook, D.L., Ioannidis, J., Keromytis, A.D., Luck, J.: CryptoGraphics: Secret Key Cryptography Using Graphics Cards. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 334–350. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption Standard. Springer, Heidelberg (2002)CrossRefMATHGoogle Scholar
  5. 5.
    Harrison, O., Waldron, J.: AES encryption implementation and analysis on commodity graphics processing units. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 209–226. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Iwai, K., Kurokawa, T., Nishikawa, N.: AES encryption implementation on CUDA GPU and its analysis. In: 2010 First International Conference on Networking and Computing (ICNC), pp. 209–214. IEEE (2010)Google Scholar
  7. 7.
    Iwai, K., Nishikawa, N., Kurokawa, T.: Acceleration of AES encryption on CUDA GPU. Int. J. Netw. Comput. 2(1), 131–145 (2012)Google Scholar
  8. 8.
    Käsper, E., Schwabe, P.: Faster and timing-attack resistant AES-GCM. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 1–17. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Li, Q., Zhong, C., Zhao, K., Mei, X., Chu, X.: Implementation and analysis of AES encryption on GPU. In: 14th IEEE International Conference on High Performance Computing and Communication and 9th IEEE International Conference on Embedded Software and Systems, HPCC-ICESS 2012, pp. 843–848 (2012)Google Scholar
  10. 10.
    Lim, R.K., Pro, J.W., Begley, M.R., Utz, M., Petzold, L.R.: High-performance simulation of fracture in idealized ‘brick and mortar’ composites using adaptive Monte Carlo minimization on the GPU (Manuscript, in preparation, November 2014)Google Scholar
  11. 11.
    Manavski, S.A.: CUDA compatible GPU as an efficient hardware accelerator for AES cryptography. In: IEEE International Conference on Signal Processing and Communications, 2007, ICSpPC 2007, pp. 65–68 (2007)Google Scholar
  12. 12.
    Matsui, M.: How Far Can We Go on the x64 Processors? In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 341–358. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Matsui, M., Nakajima, J.: On the power of bitslice implementation on Intel Core2 processor. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 121–134. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    National Institute of Standards and Technology: Advanced Encryption Standard (AES), FIPS 197, November 2001Google Scholar
  15. 15.
    Nishikawa, N., Iwai, K., Kurokawa, T.: High-performance symmetric block ciphers on multicore CPU and GPUs. Int. J. Netw. Comput. 2(2), 251–268 (2012)Google Scholar
  16. 16.
  17. 17.
  18. 18.
    NVIDIA: GeForce 8800 GTX Specifications. http://www.nvidia.com/page/geforce_8800.html
  19. 19.
  20. 20.
  21. 21.
  22. 22.
    NVIDIA: Next Generation CUDA Compute Architecture: Fermi, v1.1. (2009)Google Scholar
  23. 23.
    NVIDIA: Parallel Thread ISA, Version 2.3 (2011)Google Scholar
  24. 24.
    NVIDIA: CUDA C Programming Guide, Version 6.5, August 2014Google Scholar
  25. 25.
    OpenSSL Group: The OpenSSL Project. http://www.openssl.org
  26. 26.
    Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: the case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  27. 27.
    Rebeiro, C., Selvakumar, D., Devi, A.S.L.: Bitslice implementation of AES. In: Pointcheval, D., Mu, Y., Chen, K. (eds.) CANS 2006. LNCS, vol. 4301, pp. 203–212. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  28. 28.
    Yamanouchi, T.: AES encryption and decryption on the GPU. GPU Gems 3, 785–804 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Rone Kwei Lim
    • 1
  • Linda Ruth Petzold
    • 1
  • Çetin Kaya Koç
    • 1
  1. 1.Department of Computer ScienceUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations