Advertisement

Secure ElGamal-Type Cryptosystems Without Message Encoding

  • Marc Joye
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9100)

Abstract

ElGamal cryptosystem is one of the oldest public-key cryptosystems. It is known to be semantically secure for arbitrary messages in the random oracle model under the decisional Diffie-Hellman assumption. Semantic security also holds in the standard model when messages are encoded as elements in the group for which the decisional Diffie-Hellman assumption is defined. This paper introduces a setting and companion cryptosystem where semantic security can be proved in the standard model without message encoding. Extensions achieving security against chosen-ciphertext attacks are also provided.

Keywords

Hash Function Security Parameter Message Space Security Notion Challenge Ciphertext 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bellare, M., Rogaway, P., Random oracles are practical: a paradigm for designing efficient protocols. In: 1st ACM Conference on Computer and Communications Security, pp. 62–73. ACM Press (1993)Google Scholar
  2. 2.
    Boneh, D.: The decision Diffie-Hellman problem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 48–63. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  3. 3.
    Boneh, D., Joux, A., Nguyên, P.Q.: Why textbook ElGamal and RSA encryption are insecure. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 30–43. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited. J. ACM 51(4), 557–594 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chevallier-Mames, B., Paillier, P., Pointcheval, D.: Encoding-free ElGamal encryption without random oracles. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 91–104. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  7. 7.
    El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  8. 8.
    ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inf. Theory 31(4), 469–472 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Fischlin, R., Schnorr, C.P.: Stronger security proofs for RSA and Rabin bits. J. Cryptology 13(2), 221–244 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2), 270–299 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Hofheinz, D., Kiltz, E.: The group of signed quadratic residues and applications. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 637–653. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic applications. In: 21st Annual ACM Symposium on Theory of Computing, pp. 33–43. ACM Press (1989)Google Scholar
  13. 13.
    Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ciphertext attacks. In: 22nd Annual ACM Symposium on Theory of Computing, pp. 427–437. ACM Press (1990)Google Scholar
  14. 14.
    Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 433–444. Springer, Heidelberg (1992)Google Scholar
  15. 15.
    Tsiounis, Y., Yung, M.: On the security of ElGamal based encryption. In: Imai, H., Zheng, Y. (eds.) PKC 1998. LNCS, vol. 1431, pp. 117–134. Springer, Heidelberg (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.TechnicolorLos AltosUSA

Personalised recommendations