The New Codebreakers pp 470-478

Part of the Lecture Notes in Computer Science book series (LNCS, volume 9100)

Secure ElGamal-Type Cryptosystems Without Message Encoding

Chapter

Abstract

ElGamal cryptosystem is one of the oldest public-key cryptosystems. It is known to be semantically secure for arbitrary messages in the random oracle model under the decisional Diffie-Hellman assumption. Semantic security also holds in the standard model when messages are encoded as elements in the group for which the decisional Diffie-Hellman assumption is defined. This paper introduces a setting and companion cryptosystem where semantic security can be proved in the standard model without message encoding. Extensions achieving security against chosen-ciphertext attacks are also provided.

References

  1. 1.
    Bellare, M., Rogaway, P., Random oracles are practical: a paradigm for designing efficient protocols. In: 1st ACM Conference on Computer and Communications Security, pp. 62–73. ACM Press (1993)Google Scholar
  2. 2.
    Boneh, D.: The decision Diffie-Hellman problem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 48–63. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  3. 3.
    Boneh, D., Joux, A., Nguyên, P.Q.: Why textbook ElGamal and RSA encryption are insecure. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 30–43. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited. J. ACM 51(4), 557–594 (2004)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Chevallier-Mames, B., Paillier, P., Pointcheval, D.: Encoding-free ElGamal encryption without random oracles. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 91–104. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  7. 7.
    El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  8. 8.
    ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inf. Theory 31(4), 469–472 (1985)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Fischlin, R., Schnorr, C.P.: Stronger security proofs for RSA and Rabin bits. J. Cryptology 13(2), 221–244 (2000)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2), 270–299 (1984)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Hofheinz, D., Kiltz, E.: The group of signed quadratic residues and applications. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 637–653. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic applications. In: 21st Annual ACM Symposium on Theory of Computing, pp. 33–43. ACM Press (1989)Google Scholar
  13. 13.
    Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ciphertext attacks. In: 22nd Annual ACM Symposium on Theory of Computing, pp. 427–437. ACM Press (1990)Google Scholar
  14. 14.
    Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 433–444. Springer, Heidelberg (1992)Google Scholar
  15. 15.
    Tsiounis, Y., Yung, M.: On the security of ElGamal based encryption. In: Imai, H., Zheng, Y. (eds.) PKC 1998. LNCS, vol. 1431, pp. 117–134. Springer, Heidelberg (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.TechnicolorLos AltosUSA

Personalised recommendations