International Conference on Current Trends in Theory and Practice of Informatics

SOFSEM 2016: Theory and Practice of Computer Science pp 265-276 | Cite as

The Complexity of Paging Against a Probabilistic Adversary

  • Stefan Dobrev
  • Juraj Hromkovič
  • Dennis Komm
  • Richard Královič
  • Rastislav Královič
  • Tobias Mömke
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9587)


We consider deterministic online algorithms for paging. The offline version of the paging problem, in which the whole input is given in advance, is known to be easily solvable. If the input is random, chosen according to some known probability distribution, an \(\mathcal {O}\mathopen {}\left( \log k\right) \)-competitive algorithm exists. Moreover, there are distributions, where no algorithm can be better than \(\mathrm {\Omega }\mathopen {}\left( \log k\right) \)-competitive.

In this paper, we ask the question of what happens if it is known that the input is one from a set of \(\ell \) potential candidates, chosen according to some probability distribution. We present an \(\mathcal {O}\mathopen {}\left( \log \ell \right) \)-competitive algorithm, and show a matching lower bound.


  1. 1.
    Albers, S.: Online algorithms: a survey. Math. Program. 97(1), 3–26 (2003)MATHMathSciNetGoogle Scholar
  2. 2.
    Bélády, L.A.: A study of replacement algorithms for virtual-storage computer. IBM Syst. J. 5(2), 78–101 (1966)CrossRefGoogle Scholar
  3. 3.
    Ben-David, S., Borodin, A.: A new measure for the study of on-line algorithms. Algorithmica 11(1), 73–91 (1994)MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Böckenhauer, H.-J., Komm, D., Královič, R., Královič, R., Mömke, T.: On the advice complexity of online problems. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 331–340. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Böckenhauer, H.-J., Komm, D., Královič, R., Královič, R.: On the advice complexity of the \(k\)-server problem. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) Automata, Languages and Programming. LNCS, vol. 6755, pp. 207–218. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cambridge University Press, New York (1998)Google Scholar
  7. 7.
    Borodin, A., Irani, S., Raghavan, P., Schieber, B.: Competitive paging with locality of reference. J. Comput. Syst. Sci. 50(2), 244–258 (1995)MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Boyar, J., Larsen, K.S., Nielsen, M.N.: The accommodating function: a generalization of the competitive ratio. SIAM J. Comput. 31(1), 233–258 (2001)MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Chou, A., Cooperstock, J., El-Yaniv, R., Klugerman, M., Leighton, T.: The statistical adversary allows optimal money-making trading strategies. In: Proceeding of SODA 1995, pp. 467–476. Society for Industrial and Applied Mathematics (1995)Google Scholar
  10. 10.
    Dobrev, S., Královič, R., Pardubská, D.: How much information about the future is needed? In: Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat, P., Bieliková, M. (eds.) SOFSEM 2008. LNCS, vol. 4910, pp. 247–258. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Emek, Y., Fraigniaud, P., Korman, A., Rosén, A.: Online computation with advice. Theor. Comput. Sci. 412(24), 2642–2656 (2011)MATHCrossRefGoogle Scholar
  12. 12.
    Harel, D., Feldman, Y.: Algorithmics: The Spirit of Computing. Addison-Wesley, 3rd edn (2004)Google Scholar
  13. 13.
    Franaszek, P.A., Wagner, T.J.: Some distribution-free aspects of paging algorithm performance. J. ACM 21(1), 31–39 (1974)MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Hromkovič, J., Královič, R., Královič, R.: Information complexity of online problems. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 24–36. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Irani, S., Karlin, A.R.: On online computation. In: Hochbaum, D.S. (ed.) Approximation Algorithms for NP-hard Problems, pp. 521–564. PWS Publishing Company (1997)Google Scholar
  16. 16.
    Komm, D., Královič, R.: Advice complexity and barely random algorithms. Theor. Inf. Appl. (RAIRO) 45(2), 249–267 (2011)MATHCrossRefGoogle Scholar
  17. 17.
    Koutsoupias, E., Papadimitriou, C.H.: Beyond competitive analysis. SIAM J. Comput. 30(1), 300–317 (2000)MATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Pandurangan, G., Upfal, E.: Entropy-based bounds for online algorithms. ACM Trans. Algorithms 3(1), 1–19 (2007)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Raghavan, P.: A statistical adversary for on-line algorithms. DIMACS 7, 79–83 (1991)Google Scholar
  20. 20.
    Shedler, G.S., Tung, C.: Locality in page reference strings. SIAM J. Comput. 1, 218–241 (1972)MATHCrossRefGoogle Scholar
  21. 21.
    Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules. Communications of the ACM 28(2), 202–208 (1985)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Fiat, A. (ed.): Online Algorithms 1996. LNCS, vol. 1442. Springer, Heidelberg (1998)MATHGoogle Scholar
  23. 23.
    Fiat, A., Woeginger, G.J.: Competitive odds and ends. In: Fiat, A., Woeginger, G.J. (eds.) Online Algorithms 1996. LNCS, vol. 1442, pp. 385–394. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  24. 24.
    Yao, A.C.-C.: Probabilistic computations: Toward a unified measure of complexity (extended abstract). In: Proceeding of FOCS 1977, pp. 222–227. IEEE Computer Society (1977)Google Scholar
  25. 25.
    Young, N.E.: Bounding the diffuse adversary. In: Proceeding of SODA 1998, pp. 420–425. Society for Industrial and Applied Mathematics (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Stefan Dobrev
    • 1
  • Juraj Hromkovič
    • 2
  • Dennis Komm
    • 2
  • Richard Královič
    • 3
  • Rastislav Královič
    • 4
  • Tobias Mömke
    • 5
  1. 1.Mathematical InstituteSlovak Academy of SciencesBratislavaSlovakia
  2. 2.Department of Computer ScienceETH ZürichZurichSwitzerland
  3. 3.Google Inc.ZurichSwitzerland
  4. 4.Department of Computer ScienceComenius UniversityBratislavaSlovakia
  5. 5.Saarland UniversitySaarbrückenGermany

Personalised recommendations