Capabilities of Ultrametric Automata with One, Two, and Three States

  • Maksims DimitrijevsEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9587)


Ultrametric automata use p-adic numbers to describe the random branching of the process of computation. Previous research has shown that ultrametric automata can have a significant decrease in computing complexity. In this paper we consider the languages that can be recognized by one-way ultrametric automata with one, two, and three states. We also show an example of a promise problem that can be solved by ultrametric integral automaton with three states.


Prime Number Binary Tree Turing Machine Regular Language Input Word 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Freivalds, R.: Ultrametric finite automata and turing machines. In: Béal, M.-P., Carton, O. (eds.) DLT 2013. LNCS, vol. 7907, pp. 1–11. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  2. 2.
    Balodis, K., Berina, A., Cīpola, K., Dimitrijevs, M., Iraids, J., et al.: On the State Complexity of Ultrametric Finite Automata. In: SOFSEM 2013, Proceedings, vol. 2, pp. 1–9, Špindlerův Mlỳn (2013)Google Scholar
  3. 3.
    Balodis, K.: Counting with probabilistic and ultrametric finite automata. In: Calude, C.S., Freivalds, R., Kazuo, I. (eds.) Gruska Festschrift. LNCS, vol. 8808, pp. 3–16. Springer, Heidelberg (2014) Google Scholar
  4. 4.
    Dimitrijevs, M., Ščeguļnaja, I., Freivalds, R.: Complexity Advantages of Ultrametric Machines. In: SOFSEM 2014, Proceedings, vol. 2, pp. 21–29, Nový Smokovec (2014)Google Scholar
  5. 5.
    Krišlauks, R., Rukšāne, I., Balodis, K., Kucevalovs, I., Freivalds, R., Nāgele, I.: Ultrametric Turing Machines with Limited Reversal Complexity. In: SOFSEM 2013. Proceedings, vol. 2, pp. 87–94, Špindlerův Mlỳn (2013)Google Scholar
  6. 6.
    Kozyrev, S.V.: Ultrametric analysis and interbasin kinetics. In: 2nd International Conference on p-Adic Mathematical Physics, American Institute of Physics, pp. 121–128 (2006)Google Scholar
  7. 7.
    Vladimirov, V.S., Volovich, I.V., Zelenov, E.I.: P-Adic Analysis and Mathematical Physics. World Scientific (1995)Google Scholar
  8. 8.
    Madore, D.A.: A first introduction to p-adic numbers.
  9. 9.
    Rabin, M.O.: Probabilistic Automata. Inf. Control 6(3), 230–245 (1963)zbMATHCrossRefGoogle Scholar
  10. 10.
    Kravtsev, M.: Quantum finite one-counter automata. In: Bartosek, M., Tel, G., Pavelka, J. (eds.) SOFSEM 1999. LNCS, vol. 1725, pp. 431–440. Springer, Heidelberg (1999) CrossRefGoogle Scholar
  11. 11.
    Watrous, J.: Quantum computational complexity. In: Meyers, R.A. (ed.) Encyclopedia of Complexity and Systems Science, pp. 7174–7201. Springer, New York (2009) CrossRefGoogle Scholar
  12. 12.
    Dimitrijevs, M.: Ultrametric Finite Automata for Turing Machine Tasks of Various Complexity. Submitted (2015)Google Scholar
  13. 13.
    Rashid, J., Yakaryılmaz, A.: Implications of quantum automata for contextuality. In: Holzer, M., Kutrib, M. (eds.) CIAA 2014. LNCS, vol. 8587, pp. 318–331. Springer, Heidelberg (2014) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Faculty of ComputingUniversity of LatviaRigaLatvia

Personalised recommendations