L-Drawings of Directed Graphs

  • Patrizio Angelini
  • Giordano Da LozzoEmail author
  • Marco Di Bartolomeo
  • Valentino Di Donato
  • Maurizio Patrignani
  • Vincenzo Roselli
  • Ioannis G. Tollis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9587)


We introduce L-drawings, a novel paradigm for representing directed graphs aiming at combining the readability features of orthogonal drawings with the expressive power of matrix representations. In an L-drawing, vertices have exclusive x- and y-coordinates and edges consist of two segments, one exiting the source vertically and one entering the destination horizontally.

We study the problem of computing L-drawings using minimum ink. We prove its NP-completeness and provide a heuristic based on a polynomial-time algorithm that adds a vertex to a drawing using the minimum additional ink. We performed an experimental analysis of the heuristic which confirms its effectiveness.


Directed Graph Vertical Segment Random Placement Horizontal Segment Directed Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Angelini, P., Da Lozzo, G., Di Bartolomeo, M., Di Donato, V., Patrignani, M., Roselli, V., Tollis, I.G.: L-drawings of directed graphs. CoRR abs/1509.00684 (2015)Google Scholar
  2. 2.
    Biedl, T.C., Kaufmann, M.: Area-efficient static and incremental graph drawings. In: Burkard, R., Woeginger, G. (eds.) ESA 1997. LNCS, vol. 1284, pp. 37–52. Springer, Heidelberg (1997)Google Scholar
  3. 3.
    Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing. Prentice Hall, Englewood Cliffs (1999)zbMATHGoogle Scholar
  4. 4.
    Díaz, J., Gibbons, A., Paterson, M., Toran, J.: The MINSUMCUT problem. In: Dehne, F., Sack, J., Santoro, N. (eds.) WADS 1991. LNCS, vol. 519, pp. 65–79. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  5. 5.
    Díaz, J., Penrose, M., Petit, J., Serna, M.: Convergence theorems for some layout measures on random lattice and random geometric graphs. Comb. Prob. Comput. 9(6), 489–511 (2000)zbMATHCrossRefGoogle Scholar
  6. 6.
    Díaz, J., Petit, J., Serna, M.: A survey of graph layout problems. ACM Comput. Surv. 34(3), 313–356 (2002)CrossRefGoogle Scholar
  7. 7.
    Dickerson, M., Eppstein, D., Goodrich, M.T., Meng, J.Y.: Confluent drawings: visualizing non-planar diagrams in a planar way. J. Graph Alg. Appl. 9(1), 31–52 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Didimo, W., Montecchiani, F., Pallas, E., Tollis, I.G.: How to visualize directed graphs: a user study. In: IISA 2014, pp. 152–157. IEEEGoogle Scholar
  9. 9.
    Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear planarity testing. SIAM J. Comput. 31(2), 601–625 (2001)zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Ghoniem, M., Fekete, J., Castagliola, P.: On the readability of graphs using node-link and matrix-based representations: a controlled experiment and statistical analysis. Inf. Vis. 4(2), 114–135 (2005)CrossRefGoogle Scholar
  11. 11.
    Golovach, P.: The total vertex separation number of a graph. Disk. Mat. 9(4), 86–91 (1997)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Golovach, P., Fomin, F.: The total vertex separation number and the profile of graphs. Disk. Mat. 10(1), 87–94 (1998)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Grinberg, E., Dambit, J.: Latviiskii Matematicheskii Ezhegodnik 2, 65–70 (1966). in RussianzbMATHMathSciNetGoogle Scholar
  14. 14.
    Gurobi Optimization: Gurobi Optimizer.
  15. 15.
    Healy, P., Nikolov, N.S.: Hierarchical drawing algorithms. In: Tamassia, R. (ed.) Handbook of Graph Drawing and Visualization. CRC Press, Boca Raton (2013)Google Scholar
  16. 16.
    Henry, N., Fekete, J., McGuffin, M.J.: Nodetrix: a hybrid visualization of social networks. IEEE Trans. Vis. Comput. Graph. 13(6), 1302–1309 (2007)CrossRefGoogle Scholar
  17. 17.
    Huang, J., Kang, Z.: A genetic algorithm for the feedback set problems. In: ICPACE 2003 (2003)Google Scholar
  18. 18.
    Huang, W., Hong, S., Eades, P.: Effects of crossing angles. In: PacificVis 2008. IEEE (2008)Google Scholar
  19. 19.
    Kornaropoulos, E.M., Tollis, I.G.: Overloaded orthogonal drawings. In: Speckmann, B. (ed.) GD 2011. LNCS, vol. 7034, pp. 242–253. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  20. 20.
    Kornaropoulos, E.M., Tollis, I.G.: DAGView: An Approach for Visualizing Large Graphs. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 499–510. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  21. 21.
    Lin, Y., Yuan, J.: Profile minimization problem for matrices and graphs. Acta Mathematicae Applicatae Sinica. English Series. Yingyong. Shuxue Xuebao 10(1), 107–112 (1994)zbMATHMathSciNetGoogle Scholar
  22. 22.
    Los Alamos Nat. Lab.: NetworkX.
  23. 23.
    Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierarchical system structures. IEEE Trans. Syst. Man Cybern. 11(2), 109–125 (1981)MathSciNetCrossRefGoogle Scholar
  24. 24.

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Patrizio Angelini
    • 1
  • Giordano Da Lozzo
    • 2
    Email author
  • Marco Di Bartolomeo
    • 2
  • Valentino Di Donato
    • 2
  • Maurizio Patrignani
    • 2
  • Vincenzo Roselli
    • 2
  • Ioannis G. Tollis
    • 3
  1. 1.Tübingen UniversityTübingenGermany
  2. 2.Roma Tre UniversityRomeItaly
  3. 3.University of Crete and Institute of Computer Science-FORTHHeraklionGreece

Personalised recommendations