A Method for Invariant Generation for Polynomial Continuous Systems

  • Andrew SogokonEmail author
  • Khalil Ghorbal
  • Paul B. Jackson
  • André Platzer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9583)


This paper presents a method for generating semi-algebraic invariants for systems governed by non-linear polynomial ordinary differential equations under semi-algebraic evolution constraints. Based on the notion of discrete abstraction, our method eliminates unsoundness and unnecessary coarseness found in existing approaches for computing abstractions for non-linear continuous systems and is able to construct invariants with intricate boolean structure, in contrast to invariants typically generated using template-based methods. In order to tackle the state explosion problem associated with discrete abstraction, we present invariant generation algorithms that exploit sound proof rules for safety verification, such as differential cut (\({\text {DC}}\)), and a new proof rule that we call differential divide-and-conquer (\({\text {DDC}}\)), which splits the verification problem into smaller sub-problems. The resulting invariant generation method is observed to be much more scalable and efficient than the naïve approach, exhibiting orders of magnitude performance improvement on many of the problems.


  1. 1.
    Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.H.: Hybrid automata: an algorithmic approach to the specification and verification of hybrid systems. In: Grossman, R.L., Ravn, A.P., Rischel, H., Nerode, A. (eds.) HS 1991 and HS 1992. LNCS, vol. 736, pp. 209–229. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  2. 2.
    Alur, R., Dang, T., Ivančić, F.: Progress on reachability analysis of hybrid systems using predicate abstraction. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp. 4–19. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Alur, R., Dang, T., Ivančić, F.: Predicate abstraction for reachability analysis of hybrid systems. ACM Trans. Embed. Comput. Syst. 5(1), 152–199 (2006)CrossRefGoogle Scholar
  4. 4.
    Arrowsmith, D., Place, C.: Dynamical Systems. Differential Equations, Maps and Chaotic Behaviour. Chapman & Hall, London (1992)Google Scholar
  5. 5.
    Bhatia, N.P., Szegő, G.P.: Stability Theory of Dynamical Systems. Springer, Heidelberg (1970)zbMATHCrossRefGoogle Scholar
  6. 6.
    Blanchini, F.: Set invariance in control. Automatica 35(11), 1747–1767 (1999)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Dumortier, F., Llibre, J., Artés, J.C.: Qualitative Theory of Planar Differential Systems. Springer, Berlin (2006)zbMATHGoogle Scholar
  8. 8.
    Ghorbal, K., Platzer, A.: Characterizing algebraic invariants by differential radical invariants. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014 (ETAPS). LNCS, vol. 8413, pp. 279–294. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  9. 9.
    Ghorbal, K., Sogokon, A., Platzer, A.: A hierarchy of proof rules for checking differential invariance of algebraic sets. In: D’Souza, D., Lal, A., Larsen, K.G. (eds.) VMCAI 2015. LNCS, vol. 8931, pp. 431–448. Springer, Heidelberg (2015)Google Scholar
  10. 10.
    Goriely, A.: Integrability and Nonintegrability of Dynamical Systems. Advanced series in nonlinear dynamics. World Scientific, Singapore (2001)zbMATHGoogle Scholar
  11. 11.
    Gulwani, S., Tiwari, A.: Constraint-based approach for analysis of hybrid systems. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 190–203. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Hale, J.K., LaSalle, J.P.: Differential equations: linearity vs. nonlinearity. SIAM Rev. 5(3), 249–272 (1963)zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Henzinger, T.A.: The theory of hybrid automata. In: LICS, pp. 278–292. IEEE Computer Society Press (1996)Google Scholar
  14. 14.
    Liu, J., Zhan, N., Zhao, H.: Computing semi-algebraic invariants for polynomial dynamical systems. In: Chakraborty, S., Jerraya, A., Baruah, S.K., Fischmeister, S. (eds.) EMSOFT, pp. 97–106. ACM (2011)Google Scholar
  15. 15.
    Liu, J., Zhan, N., Zhao, H., Zou, L.: Abstraction of elementary hybrid systems by variable transformation. In: Bjørner, N., Boer, F. (eds.) FM 2015. LNCS, vol. 9109, pp. 360–377. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  16. 16.
    Matringe, N., Moura, A.V., Rebiha, R.: Generating invariants for non-linear hybrid systems by linear algebraic methods. In: Cousot, R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 373–389. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Papachristodoulou, A., Prajna, S.: Analysis of non-polynomial systems using the sum of squares decomposition. In: Henrion, D., Garulli, A. (eds.) Positive Polynomials in Control. Lecture Notes in Control and Information Science, vol. 312, pp. 23–43. Springer, Berlin (2005)Google Scholar
  18. 18.
    Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reason. 41(2), 143–189 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Platzer, A.: Differential-algebraic dynamic logic for differential-algebraic programs. J. Log. Comput. 20(1), 309–352 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Platzer, A.: The complete proof theory of hybrid systems. In: LICS, pp. 541–550. IEEE (2012)Google Scholar
  21. 21.
    Platzer, A.: The structure of differential invariants and differential cut elimination. LMCS 8(4), 1–38 (2012)Google Scholar
  22. 22.
    Platzer, A., Clarke, E.M.: Computing differential invariants of hybrid systems as fixedpoints. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 176–189. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  23. 23.
    Powers, J.E.: Elimination of special functions from differential equations. Commun. ACM 2(3), 3–4 (1959)zbMATHCrossRefGoogle Scholar
  24. 24.
    Prajna, S., Jadbabaie, A.: Safety verification of hybrid systems using barrier certificates. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 477–492. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  25. 25.
    Ratschan, S., She, Z.: Safety verification of hybrid systems by constraint propagation-based abstraction refinement. ACM Trans. Embed. Comput. Syst., vol. 6(1), Febuary 2007Google Scholar
  26. 26.
    Richardson, D.: Some undecidable problems involving elementary functions of a real variable. J. Symb. Log. 33(4), 514–520 (1968)zbMATHCrossRefGoogle Scholar
  27. 27.
    Sankaranarayanan, S.: Automatic invariant generation for hybrid systems using ideal fixed points. In: HSCC, pp. 221–230 (2010)Google Scholar
  28. 28.
    Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Constructing invariants for hybrid systems. FMSD 32(1), 25–55 (2008)zbMATHGoogle Scholar
  29. 29.
    Sankaranarayanan, S., Tiwari, A.: Relational abstractions for continuous and hybrid systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 686–702. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  30. 30.
    Savageau, M.A., Voit, E.O.: Recasting nonlinear differential equations as S-systems: a canonical nonlinear form. Math. Biosci. 87(1), 83–115 (1987)zbMATHMathSciNetCrossRefGoogle Scholar
  31. 31.
    Schlomiuk, D.: Algebraic and geometric aspects of the theory of polynomial vector fields. In: Schlomiuk, D. (ed.) Bifurcations and Periodic Orbits of Vector Fields. NATO ASI Series, vol. 408, pp. 429–467. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  32. 32.
    Schlomiuk, D.: Algebraic particular integrals, integrability and the problem of the center. Trans. Am. Math. Soci. 338(2), 799–841 (1993)zbMATHMathSciNetCrossRefGoogle Scholar
  33. 33.
    Strogatz, S.H.: Nonlinear Dynamics and Chaos. Westview Press, New York (1994)Google Scholar
  34. 34.
    Stursberg, O., Kowalewski, S., Hoffmann, I., Preußig, J.: Comparing timed and hybrid automata as approximations of continuous systems. In: Antsaklis, P.J., Kohn, W., Nerode, A., Sastry, S.S. (eds.) HS 1996. LNCS, vol. 1273. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  35. 35.
    Tarski, A.: A decision method for elementary algebra and geometry. Bull. Am. Math. Soci. 59, 91–93 (1951)Google Scholar
  36. 36.
    Tiwari, A., Khanna, G.: Series of abstractions for hybrid automata. In: Tomlin, C.J., Greenstreet, M.R. (eds.) HSCC 2002. LNCS, vol. 2289, p. 465. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  37. 37.
    Tiwari, A.: Abstractions for hybrid systems. FMSD 32(1), 57–83 (2008)zbMATHGoogle Scholar
  38. 38.
    Tiwari, A.: Generating box invariants. In: Egerstedt, M., Mishra, B. (eds.) HSCC 2008. LNCS, vol. 4981, pp. 658–661. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  39. 39.
    Tiwari, A., Khanna, G.: Nonlinear systems: approximating reach sets. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 600–614. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  40. 40.
    Wang, T.C., Lall, S., West, M.: Polynomial level-set method for polynomial system reachable set estimation. IEEE Trans. Autom. Control 58(10), 2508–2521 (2013)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Texts in Applied Mathematics, 2nd edn. Springer, New York (2003)zbMATHGoogle Scholar
  42. 42.
    Wu, Z.: Tangent cone and contingent cone to the intersection of two closed sets. Nonlinear Anal.: Theor., Methods Appl. 73(5), 1203–1220 (2010)zbMATHCrossRefGoogle Scholar
  43. 43.
    Zaki, M.H., Tahar, S., Bois, G.: A symbolic approach for the safety verification of continuous systems. In: Proceedings of the International Conference on Computational Sciences, pp. 93–100 (2007)Google Scholar
  44. 44.
    Zhao, H., Zhan, N., Kapur, D.: Synthesizing switching controllers for hybrid systems by generating invariants. In: Liu, Z., Woodcock, J., Zhu, H. (eds.) Theories of Programming and Formal Methods. LNCS, vol. 8051, pp. 354–373. Springer, Heidelberg (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Andrew Sogokon
    • 1
    Email author
  • Khalil Ghorbal
    • 2
  • Paul B. Jackson
    • 1
  • André Platzer
    • 2
  1. 1.LFCS, School of InformaticsUniversity of EdinburghEdinburghScotland, UK
  2. 2.Computer Science DepartmentCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations