International Conference on Verification, Model Checking, and Abstract Interpretation

Verification, Model Checking, and Abstract Interpretation pp 250-267 | Cite as

Lipschitz Robustness of Timed I/O Systems

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9583)

Abstract

We present the first study of robustness of systems that are both timed as well as reactive (I/O). We study the behavior of such timed I/O systems in the presence of uncertain inputs and formalize their robustness using the analytic notion of Lipschitz continuity: a timed I/O system is K-(Lipschitz) robust if the perturbation in its output is at most K times the perturbation in its input. We quantify input and output perturbation using similarity functions over timed words such as the timed version of the Manhattan distance and the Skorokhod distance. We consider two models of timed I/O systems — timed transducers and asynchronous sequential circuits. We show that K-robustness of timed transducers can be decided in polynomial space under certain conditions. For asynchronous sequential circuits, we reduce K-robustness w.r.t. timed Manhattan distances to K-robustness of discrete letter-to-letter transducers and show PSpace-completeness of the problem.

References

  1. 1.
    Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126(2), 183–235 (1994)MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Alur, R., Madhusudan, P.: Decision problems for timed automata: a survey. In: Bernardo, M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 1–24. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  3. 3.
    Bloem, R., Greimel, K., Henzinger, T., Jobstmann, B.: Synthesizing robust systems. In: Formal Methods in Computer Aided Design (FMCAD), pp. 85–92 (2009)Google Scholar
  4. 4.
    Bouyer, P., Brihaye, T., Bruyère, V., Raskin, J.-F.: On the optimal reachability problem on weighted timed automata. FMSD 31(2), 135–175 (2007)MATHGoogle Scholar
  5. 5.
    Bouyer, P., Markey, N., Sankur, O.: Robustness in timed automata. In: Abdulla, P.A., Potapov, I. (eds.) RP 2013. LNCS, vol. 8169, pp. 1–18. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  6. 6.
    Černý, P., Henzinger, T.A., Radhakrishna, A.: Simulation distances. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 253–268. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  7. 7.
    Chaudhuri, S., Gulwani, S., Lublinerman, R.: Continuity analysis of programs. In: Principles of Programming Languages (POPL), pp. 57–70 (2010)Google Scholar
  8. 8.
    Chaudhuri, S., Gulwani, S., Lublinerman, R., Navidpour, S.: Proving programs robust. In: Foundations of Software Engineering (FSE), pp. 102–112 (2011)Google Scholar
  9. 9.
    Doyen, L., Henzinger, T.A., Legay, A., Ničković, D.: Robustness of sequential circuits. In: Application of Concurrency to System Design (ACSD), pp. 77–84 (2010)Google Scholar
  10. 10.
    Gupta, V., Henzinger, T.A., Jagadeesan, R.: Robust timed automata. In: Maler, O. (ed.) HART 1997. LNCS, vol. 1201, pp. 331–345. Springer, Heidelberg (1997) CrossRefGoogle Scholar
  11. 11.
    Henzinger, T.A.: Two challenges in embedded systems design: predictability and robustness. Philos. Trans. R. Soc. 366, 3727–3736 (2008)CrossRefGoogle Scholar
  12. 12.
    Henzinger, T.A., Otop, J., Samanta, R.: Lipschitz robustness of finite-state transducers. In: FSTTCS 2014, vol. 1, p. 431 (2014)Google Scholar
  13. 13.
    Zhou, K., Doyle, J.C., Glover, K.: Robust and Optimal Control. Prentice Hall, Upper Saddle River (1996)MATHGoogle Scholar
  14. 14.
    Krichen, M., Tripakis, S.: Conformance testing for real-time systems. Form. Methods Syst. Des. 34(3), 238–304 (2009)MATHCrossRefGoogle Scholar
  15. 15.
    Lozano, A., Balcázar, J.L.: The complexity of graph problems for succinctly represented graphs. Graph-Theoretic Concepts in Computer Science. LNCS, vol. 411, pp. 277–286. Springer, Heidelberg (1990) CrossRefGoogle Scholar
  16. 16.
    Majumdar, R., Render, E., Tabuada, P.: A theory of robust omega-regular software synthesis. ACM Trans. Embed. Comput. Syst. 13, 1–27 (2013)CrossRefGoogle Scholar
  17. 17.
    Majumdar, R., Saha, I.: Symbolic robustness analysis. In: IEEE Real-Time Systems Symposium, pp. 355–363 (2009)Google Scholar
  18. 18.
    Samanta, R., Deshmukh, J.V., Chaudhuri, S.: Robustness analysis of networked systems. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp. 229–247. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  19. 19.
    Samanta, R., Deshmukh, J.V., Chaudhuri, S.: Robustness analysis of string transducers. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 427–441. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  20. 20.
    Stergiou, C., Tripakis, S., Matsikoudis, E., Lee, E.A.: On the verification of timed discrete-event models. In: Braberman, V., Fribourg, L. (eds.) FORMATS 2013. LNCS, vol. 8053, pp. 213–227. Springer, Heidelberg (2013) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Thomas A. Henzinger
    • 1
  • Jan Otop
    • 1
    • 2
  • Roopsha Samanta
    • 1
  1. 1.ISTKlosterneuburgAustria
  2. 2.University of WrocławWrocławPoland

Personalised recommendations