Systems Biology in Single Cells

  • Macdara Glynn
  • Damien King
  • Jens Ducrée
Part of the Series in BioEngineering book series (SERBIOENG)


From the beginning of the twenty-first century, there has been a shift towards studying biological processes using a holistic rather than a reductionist scientific paradigm thus establishing the approach now named “systems biology” or “systomics”. This method of biological investigation represents a synergy where life sciences, systems engineering, and information technology examine the interactions between biological pathways, rather than solely focusing on individual pathways in an isolated manner. To date, systems biology has often studied population averages rather than individual characteristics of cells which might display a significant spread. However, as a single cell is the smallest operational biological unit that encompasses all metabolites necessary for maintaining a viable living entity, the application of systems biology approaches to the study of distinct cells is fast becoming a goal of many research groups. In this chapter we will describe some of the technologies that enable the isolation of individual cells in a form that accommodates systomics studies, the biological methods that are then deployed on such isolated cells to generate system-level information, and finally describe some of the bioinformatics that is specifically directed towards single-cell studies.


Systems level biology Microfluidic lab-on-a-chip Single cell analysis Integrated biology Single cell optical detection 


  1. 1.
    Westerhoff HV, Alberghina L (2005) Systems biology: did we know it all along? Anonymous Syst Biol Springer:3–9Google Scholar
  2. 2.
    Mast FD, Ratushny AV, Aitchison JD (2014) Systems cell biology. J Cell Biol 206(6):695–706. doi: 10.1083/jcb.201405027
  3. 3.
    Short B (2009) Cell biologists expand their networks. J Cell Biol 186(3):305–311. doi: 10.1083/jcb.200907093
  4. 4.
    Tay S, Hughey JJ, Lee TK et al (2010) Single-cell NF-[kgr] B dynamics reveal digital activation and analogue information processing. Nature 466(7303):267–271CrossRefGoogle Scholar
  5. 5.
    Cheong R, Bergmann A, Werner SL et al (2006) Transient Ikappa B kinase activity mediates temporal NF-kappaB dynamics in response to a wide range of tumor necrosis factor-alpha doses. J Biol Chem 281(5):2945–2950. M510085200 [pii]Google Scholar
  6. 6.
    Lahav G, Rosenfeld N, Sigal A et al (2004) Dynamics of the p53-Mdm2 feedback loop in individual cells. Nat Genet 36(2):147–150CrossRefGoogle Scholar
  7. 7.
    Di Carlo D, Wu LY, Lee LP (2006) Dynamic single cell culture array. Lab Chip 6(11):1445–1449CrossRefGoogle Scholar
  8. 8.
    Bonetta L (2005) Flow cytometry smaller and better. Nat Methods 2(10):785–795. doi: 10.1038/nmeth1005-785
  9. 9.
    Kaczmarczyk A, Sullivan KF (2014) CENP-W plays a role in maintaining bipolar spindle structure. PLoS One 9(10):e106464. doi: 10.1371/journal.pone.0106464
  10. 10.
    Yivgi-Ohana N, Eifer M, Addadi Y et al (2011) Utilizing mitochondrial events as biomarkers for imaging apoptosis. Cell Death Dis 2(6):e166. doi: 10.1038/cddis.2011.47
  11. 11.
    Breslauer DN, Lee PJ, Lee LP (2006) Microfluidics-based systems biology. Mol Biosyst 2(2):97–112. doi: 10.1039/B515632G
  12. 12.
    Lee PJ, Hung PJ, Rao VM et al (2006) Nanoliter scale microbioreactor array for quantitative cell biology. Biotechnol Bioeng 94(1):5–14CrossRefGoogle Scholar
  13. 13.
    Takayama S, Ostuni E, LeDuc P et al (2001) Subcellular positioning of small molecules. Nature 411(6841):1016. doi: 10.1038/35082637
  14. 14.
    Lucchetta EM, Lee JH, Fu LA et al (2005) Dynamics of drosophila embryonic patterning network perturbed in space and time using microfluidics. Nature 434(7037):1134–1138CrossRefGoogle Scholar
  15. 15.
    Rowat AC, Bird JC, Agresti JJ et al (2009) Tracking lineages of single cells in lines using a microfluidic device. Proc Natl Acad Sci U S A 106(43):18149–18154. doi: 10.1073/pnas.0903163106
  16. 16.
    Wu H, Wheeler A, Zare RN (2004) Chemical cytometry on a picoliter-scale integrated microfluidic chip. Proc Natl Acad Sci U S A 101(35):12809–12813. doi: 10.1073/pnas.0405299101
  17. 17.
    Cai L, Friedman N, Xie XS (2006) Stochastic protein expression in individual cells at the single molecule level. Nature 440(7082):358–362CrossRefGoogle Scholar
  18. 18.
    Di Carlo D, Aghdam N, Lee LP (2006) Single-cell enzyme concentrations, kinetics, and inhibition analysis using high-density hydrodynamic cell isolation arrays. Anal Chem 78(14):4925–4930CrossRefGoogle Scholar
  19. 19.
    Burger R, Kurzbuch D, Gorkin R et al (2015) An integrated centrifugo-opto-microfluidic platform for arraying, analysis, identification and manipulation of individual cells. Lab Chip 15(2):378–381CrossRefGoogle Scholar
  20. 20.
    Eriksson E, Sott K, Lundqvist F et al (2010) A microfluidic device for reversible environmental changes around single cells using optical tweezers for cell selection and positioning. Lab Chip 10(5):617–625CrossRefGoogle Scholar
  21. 21.
    Konry T, Golberg A, Yarmush M (2013) Live single cell functional phenotyping in droplet nano-liter reactors. Sci Rep:3. doi: 10.1038/srep03179
  22. 22.
    Mazutis L, Gilbert J, Ung WL et al (2013) Single-cell analysis and sorting using droplet-based microfluidics. Nat Protoc 8(5):870–891CrossRefGoogle Scholar
  23. 23.
    Gautier A, Juillerat A, Heinis C et al (2008) An engineered protein tag for multiprotein labeling in living cells. Chem Biol 15(2):128–136CrossRefGoogle Scholar
  24. 24.
    Prendergast L, Van Vuuren C, Kaczmarczyk A et al (2011) Premitotic assembly of human CENPs-T and-W switches centromeric chromatin to a mitotic state. PLoS Biol 9(6):e1001082CrossRefGoogle Scholar
  25. 25.
    Bodor DL, Valente LP, Mata JF et al (2013) Assembly in G1 phase and long-term stability are unique intrinsic features of CENP-A nucleosomes. Mol Biol Cell 24(7):923–932. doi: 10.1091/mbc.E13-01-0034
  26. 26.
    Lubeck E, Cai L (2012) Single-cell systems biology by super-resolution imaging and combinatorial labeling. Nat Methods 9(7):743–748CrossRefGoogle Scholar
  27. 27.
    Hell SW (2007) Far-field optical nanoscopy. Science 316(5828):1153–1158. 316/5828/1153 [pii]Google Scholar
  28. 28.
    Shapiro HM (2005) Practical flow cytometry. Wiley, HobokenGoogle Scholar
  29. 29.
    Groner W, Simson E (1995) Practical guide to modern hematology analyzers. Wiley, EnglandGoogle Scholar
  30. 30.
    Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3(10):793–796CrossRefGoogle Scholar
  31. 31.
    Dempsey GT, Vaughan JC, Chen KH et al (2011) Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging. Nat Methods 8(12):1027–1036CrossRefGoogle Scholar
  32. 32.
    Schermelleh L, Heintzmann R, Leonhardt H (2010) A guide to super-resolution fluorescence microscopy. J Cell Biol 190(2):165–175. doi: 10.1083/jcb.201002018
  33. 33.
    Kantor AB, Alters SE, Cheal K et al (2004) Immune systems biology: immunoprofiling of cells and molecules. Biotechniques 36(3):520–525Google Scholar
  34. 34.
    Zuck P, Lao Z, Skwish S et al (1999) Ligand-receptor binding measured by laser-scanning imaging. Proc Natl Acad Sci U S A 96(20):11122–11127CrossRefGoogle Scholar
  35. 35.
    Kamentsky LA (2000) Laser scanning cytometry. Methods Cell Biol 2001(63):51–88Google Scholar
  36. 36.
    Tibbe AG, de Grooth BG, Greve J et al (1999) Optical tracking and detection of immuno magnetically selected and aligned cells. Nat Biotechnol 17(12):1210–1213CrossRefGoogle Scholar
  37. 37.

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Biomedical Diagnostics InstituteDublin City UniversityDublin 9Ireland

Personalised recommendations