Advertisement

Hochspannungsgleichstromübertragung

  • Dirk WestermannEmail author
Chapter

Zusammenfassung

Hochspannungsgleichstromübertragung ist die Technologie der Wahl für den Transport großer Energiemengen über weite Entfernungen. Dieses Kapitel gibt einen Überblick über Grundschaltungen und Anwendungsaspekte.

Literatur

  1. 1.
    Kimbark E.D.: Direct Current Transmission, Volume 1, Wiley-Interscience, 1971Google Scholar
  2. 2.
    Wilheln D., Piwko R. J.: High Voltage Direct Current Handbook, First Edition, EPRI 1994Google Scholar
  3. 3.
    Sood V.K.: HVDC and FACTS Controllers, Application of Static Converter in Power Systems, Kluwer Acadimic Publishers, 2004Google Scholar
  4. 4.
    Breuer G.D., et.al.: HVDC Surge Diverters and their Application for Overvoltage Protection on HVDC Schemes", CIGRE Report 33-14, Paris 1972Google Scholar
  5. 5.
    Käuferle J., Povh D.: Concepts of Overvoltage and Overcurrent Protection of HVDC Converters, CIGRE Report 14-08, Paris 1978Google Scholar
  6. 6.
    Beringer J., et.al.: Design of Water cooled Thyristor Valve Group for Extension of Manitoba Hydro HVDC System, CIGRE Report 14-05, Paris 1976Google Scholar
  7. 7.
    Schettler F., Huang H., Christl N.: HVDC Transmission Systems using Voltage Sourced Converters – Design and Applications, IEEE Power Engineering Society Summer Meeting, July 2000Google Scholar
  8. 8.
    Magg T.G., Mutschler H.D., Nyberg S.; Wasborg J., Thunehed H., Sandberg B.: Caprivi Link HVDC Interconnector: Site selection, geophysical investigations, interference impacts and design of the earth electrodes, CIGRE Session Paper B4-302, Paris, 2010Google Scholar
  9. 9.
    CIGRE WG B4.46 Report, VSC based HVDC for bulk power transmission – economic aspects and comparison with other AC and DC technologies, 2011Google Scholar
  10. 10.
    Woodford D.A.: HVDC Transmission, Report Manitoba HVDC Research Centre (hvdc.ca), Winnipeg (1998)Google Scholar
  11. 11.
    Bahrmann M.P.: Overview of HVDC Transmission, IEEE PES Power Systems Conference and Exposition, Oct 29th – Nov 1st, 2006Google Scholar
  12. 12.
    Lazaridis L.P.: Economic Comparison of HVAC and HVDC Solutions for Large Offshore Wind Farms under Special Consideration of Reliability, Master Thesis, Royal Institute of Technology, Stockholm, 2005Google Scholar
  13. 13.
    Bahrman M., Johnson B.K.: The ABCs of HVDC Transmission Technologies, IEEE Power & Energy magazine, pp.32-44, March/April 2007Google Scholar
  14. 14.
    LeDu A., Taisne J.P., Birret D., Couraud X.: The Sardinia-Corsica-Italy Multiterminal dc Scheme, CIGRE SV 14, Paper 13-8, 1982Google Scholar
  15. 15.
    Reeve J.: Multiterminal HVDC Power Systems, IEEE T-PAS, Vol. 99, No. 2, March/April 1980Google Scholar
  16. 16.
    Guide for Planning DC Links Terminating at AC Systems Location Having Low Short-Circuit Capacity – Part 1: AC/DC Interaction Phenomena, CIGRE Brochure No. 68, Paris, June 1992Google Scholar
  17. 17.
    Reeve J., Chen S.P.: Digital Simulation of a Multiterminal HVDC Transmission System, IEEE T-PAS, Vol. 103, No. 12, December 1984CrossRefGoogle Scholar
  18. 18.
    Ishikawa M., Horiuchi S., Irokawa S., Imai K., Hirose S., Sekiya K.: Simulator Study of Multiterminal HVDC Transmission System without fast Commutation, IEEE T-PWRD, Vol., No. 3, July 1986Google Scholar
  19. 19.
    Sakurai T., Goto K.: A new Control Method for Multiterminal HVDC Transmission without fast Commutation Systems, IEEE T-PAS, Vol. 102, No. 5, May 1983CrossRefGoogle Scholar
  20. 20.
    Long W.F., Reeve J.: Application Aspects of Multiterminal DC Power Transmission, IEEE T-PWRD, Vol. 5, No. 4, pp. 2084-2098, November 1990Google Scholar
  21. 21.
    Guide for Planning DC Links Terminating at AC Systems Location Having Low Short-Circuit Capacity – Part 2: Planning Guidelines, CIGRE Brochure No. 115, Paris, September 1997Google Scholar
  22. 22.
    Arrilaga J.: High Voltage Direct Current Transmission, 2nd Edition, The Institution of Electrical Engineers, 1998Google Scholar
  23. 23.
    Karlecik-Maier F.: A New Closed Loop Control Method for HVDC Transmission, IEEE T-PWRD, Vol. 11, No. 4, pp. 1955-1960, October 1996Google Scholar
  24. 24.
    Thepparat P.: Analysis of the Combined and Coordinated Control Method for HVDC Transmission, Shaker Verlag, Aachen, 2010Google Scholar
  25. 25.
    Ainsworth J.D.: Developments in the Phase-Locked Oscillator Control System for HVDC and other large Convertors, IEE Conference Publication 255 on AC and DC Power Transmission, pp. 98-103, September 1985Google Scholar
  26. 26.
    Sucena-Paiva J.P., Freris L.L.: Stability of a DC Transmission Link between strong AC Systems, IEE Proc.120 (1973), pp. 1233-1243Google Scholar
  27. 27.
    Ainsworth J.D.: The Phase-Locked Oscillators – A New Control System for Controlled Static Convertors, IEEE PAS, Vol.120, no.10, pp.1233-1242, October 1973Google Scholar
  28. 28.
    It’s time to connect – a technical description of HVDC light, ABB Grid Systems - HVDC, Ludvika, Sweden, March 2008Google Scholar
  29. 29.
    Westerweller T., Friedrich K., Armonies U., Orini A., Parquet D., When, S.: Transbay cable – world’s first HVDC system using multilevel voltage-sourced converter, CIGRE Session Paris, Paper B4-101-2010, August 2010Google Scholar
  30. 30.
    CIGRE SC B4 Colloquium, Northern European experiences and future needs of HVDC & FACTS applications, Bergen, Norwegen, 10.06. – 12.06.2009Google Scholar
  31. 31.
    Stern E., Nach J., Schoeniger C., Bartzsch C., Acquaotta G., Bacchini,M., Orini A.: The Neptune Regional Transmission System 500 kV Project, Paper B4-118, CIGRE Session Paris, 2008Google Scholar
  32. 32.
    Stark G.: Energieübertragung mit HGÜ-Technologie und Projektbeispiele, Beitrag zur ETG-Fachtagung „Transport von elektrischer Energie mit Freileitungen und Kabeln“, ETH Zürich, 2. April 2009Google Scholar
  33. 33.
    Barberis N.; Todorovic J.; Ackermann T.: Loss evaluation of HVAC and HVDC transmission solutions for large offshore wind farms, Electronic Power Systems Research 76 (2006) 916-927, 2006Google Scholar
  34. 34.
    HVDC PLUS – Basic and Principle of Operation, Siemens Energy Sector, PTD H 1 M7Re, V1, March 7th, 2008Google Scholar
  35. 35.
    Adapa, R. (ed.): Advanced HVDC Systems at ±800 kV an Above, Electric Power Research Institute (EPRI) Report 1013857, November 2007Google Scholar
  36. 36.
    Vancers, I.; Christofersen, D.J.; Leirbukt, A.; Benett, M.G.: A survey of the reliability of HVDC systems throughout the world during 2005-2006, CIGRE Paper B4-119, Paris Session, 2008Google Scholar
  37. 37.
    Plotzke, O.: Untersuchung des ungestörten magnetischen und elektrischen Felds unter maximaler Last bei einer Nenngleichspannung von ±800 kV unter einer Freileitung, Abschlussbericht A-00468 / 2009, Forschungsgesellschaft für Energie und Umwelttechnologie FGEU mbH, November 2009Google Scholar
  38. 38.
    Ferrero, G.M.: The Transmission System, Presentation at the World Energy Council – International Forum on the Grand Inga Project, 6-17 March, 2007Google Scholar
  39. 39.
    Aström, U.; Lescale, V.: Converter Stations for 800 kV HVDC, Proceedings of the International Power System Technology Conference, PowerCon, Chongqing, China, 22-26 October 2006Google Scholar
  40. 40.
    Sechste Allgemeine Verwaltungsvorschrift zum Bundes-Immissionsschutzgesetz (Technische Anleitung zum Schutz gegen Lärm - TA Lärm) vom 26. August 1998 (GMBl Nr. 26/ 1998 S. 503)Google Scholar
  41. 41.
    Marten, A.-K.: Operation of meshed high voltage direct current (HVDC) overlay grids - From operational planning to real time operation, Ilmenauer Beiträge zur elektrischen Energiesystem-, Geräteund Anlagentechnik (IBEGA), Band 12, Universitätsverlag Ilmenau, 2015Google Scholar
  42. 42.
    Marten, A.-K.; Sass, F.; Westermann, D.: Mixed AC/DC OPF using Differential Evolution for Global Minima Identification, PowerTech, Einshoven, 2015Google Scholar
  43. 43.
    Marten, A.-K.: Marten, A.-K.: Integration der Betriebsführung eines HGÜ-Overlay-Netzes in die Leistungs-Frequenzregelung eines Drehstrom-Verbundnetzes, Ilmenauer Beiträge zur elektrischen Energiesystem-, Geräte- und Anlagentechnik, Vol. 3, Universitätsverlag Ilmenau, ISBN 978-3-86360-038-9, 2012Google Scholar
  44. 44.
    Frey, K.; Rudion, K.; Christian, J.: Optimal Operation Strategy for VSC HVDC Links within an Interconnected Power System, Cigré Symposium, Lund, 2015Google Scholar
  45. 45.
    Cigré WG B4.58, “Devices for load flow control and methodologies for direct voltage control in a meshed HVDC grid”Google Scholar
  46. 46.
    Dragon, J., Schettler, F., Marten, A.-K., et all, “Development of Functional Specifications for HVDC Grid Systems”, in Proc. 11th IET International Conference on AC and DC Transmission (ACDC 2015), Birmingham, United Kingdom, 02/2015Google Scholar
  47. 47.
    Vrana T. K., Beerten J., Belmans R. and Fosso O. B., “A classification of DC Node Voltage Control Methods for HVDC Grids”, Electric Power System Research, vol. 103, pp. 137-144, 2013CrossRefGoogle Scholar
  48. 48.
    Marten A.-K. and Westermann D., “Power Flow Participation by an Embedded HVDC Grid in an Interconnected Power System”, in Proc. IEEE PES Innovative Smart Grid Technologies Europe, Berlin, Germany, 10/2012Google Scholar
  49. 49.
    Marten A.-K., Sass F. and Westermann D., “Continuous p-v-characteristic parameterization for multi-terminal HVDC systems”, in IEEE Transactions on Power Delivery, 2016Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland 2018

Authors and Affiliations

  1. 1.Technische Universität IlmenauIlmenauDeutschland

Personalised recommendations