Computing Approximate Nash Equilibria in Network Congestion Games with Polynomially Decreasing Cost Functions

  • Vittorio Bilò
  • Michele Flammini
  • Gianpiero Monaco
  • Luca Moscardelli
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9470)

Abstract

We consider the problem of computing approximate Nash equilibria in monotone congestion games with polynomially decreasing cost functions. This class of games generalizes the one of network congestion games, while polynomially decreasing cost functions also include the fundamental Shapley cost sharing value. We design an algorithm that, given a parameter \(\gamma >1\) and a subroutine able to compute \(\rho \)-approximate best-responses, outputs a \(\gamma (1/p+\rho )\)-approximate Nash equilibrium, where p is the number of players. The computational complexity of the algorithm heavily depends on the choice of \(\gamma \). In particular, when \(\gamma \in O(1)\), the complexity is quasi-polynomial, while when \(\gamma \in \varOmega (p^\epsilon )\), for a fixed constant \(\epsilon >0\), it becomes polynomial. Our algorithm provides the first non-trivial approximability results for this class of games and achieves an almost tight performance for network games in directed graphs. On the negative side, we also show that the problem of computing a Nash equilibrium in Shapley network cost sharing games is PLS-complete even in undirected graphs, where previous hardness results where known only in the directed case.

References

  1. 1.
    Ackermann, H., Röglin, H., Vöcking, B.: On the impact of combinatorial structure on congestion games. J. ACM 55(6), 25 (2008)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Albers, S., Lenzner, P.: On approximate Nash equilibria in network design. Internet Math. 9(4), 384–405 (2013)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Anshelevich, E., Dasgupta, A., Kleinberg, J.M., Tardos, E., Wexler, T., Roughgarden, T.: The price of stability for network design with fair cost allocation. SIAM J. Comput. 38(4), 1602–1623 (2008)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Caragiannis, V., Fanelli, A., Gravin, N., Skopalik, A.: Efficient Computation of Approximate Pure Nash Equilibria in Congestion Games. In: Proceedings of the IEEE 52nd Symposium on Foundations of Computer Science (FOCS), pp. 532–541 (2011)Google Scholar
  5. 5.
    Charikar, M., Chekuri, C., Cheung, T., Dai, Z., Goel, A., Guha, S., Li, M.: Approximation algorithms for directed Steiner problems. J. Algorithms 33(1), 73–91 (1999)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Magniez, F., de Rougemont, M., Santha, M., Zeitoun, X.: The complexity of approximate Nash equilibrium in congestion games with negative delays. In: Chen, N., Elkind, E., Koutsoupias, E. (eds.) Internet and Network Economics. LNCS, vol. 7090, pp. 266–277. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  7. 7.
    Chien, S., Sinclair, A.: Convergence to Approximate Nash Equilibria in Congestion Games. In: Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 169–178. ACM Press (2007)Google Scholar
  8. 8.
    Fabrikant, A., Papadimitriou, C.H., Talwar, K.: The complexity of pure Nash equilibria. In: Proceedings of the 36th ACM Symposium on Theory of Computing (STOC), pp. 604–612 (2004)Google Scholar
  9. 9.
    Feige, U.: A threshold of \(\log n\) for approximating set-cover. In: Proceedings of the 28th ACM Symposium on Theory of Computing (STOC), pp. 314–318 (1996)Google Scholar
  10. 10.
    Feldman, M., Kortsarz, G., Nutov, Z.: Improved approximation algorithms for Directed Steiner Forest. J. Comput. Syst. Sci. 78(1), 279–292 (2012)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Johnson, D., Papadimitriou, C., Yannakakis, M.: How easy is local search? J. Comput. Syst. Sci. 37(1), 79–100 (1988)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999) CrossRefGoogle Scholar
  13. 13.
    Monderer, D., Shapley, L.: Potential games. Games Econ. Behav. 14, 124–143 (1996)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Nash, J.F.: Equilibrium points in \(n\)-person games. In: Proceedings of the National Academy of Sciences, vol. 36, pp. 48-49 (1950)Google Scholar
  15. 15.
    Papadimitriou, C., Yannakakis, M.: Optimization, approximation, and complexity classes. In: Procedings of ACM Symposium on Theory of Computing (STOC), pp. 229–234 (1988)Google Scholar
  16. 16.
    Rosenthal, R.: A class of games possessing pure-strategy Nash equilibria. Int. J. Game Theory 2, 65–67 (1973)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Skopalik, A., Vöcking, B.: Inapproximability of pure Nash equilibria. In: Proceedings of the 40th ACM Symposium on Theory of Computing (STOC), pp. 355–364 (2008)Google Scholar
  18. 18.
    Syrgkanis, V.: The complexity of equilibria in cost sharing games. In: Saberi, A. (ed.) WINE 2010. LNCS, vol. 6484, pp. 366–377. Springer, Heidelberg (2010) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Open Access This chapter is distributed under the terms of the Creative Commons Attribution Noncommercial License, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Vittorio Bilò
    • 1
  • Michele Flammini
    • 2
    • 3
  • Gianpiero Monaco
    • 2
  • Luca Moscardelli
    • 4
  1. 1.Department of Mathematics and PhysicsUniversity of SalentoLecceItaly
  2. 2.DISIM - University of L’AquilaL’AquilaItaly
  3. 3.Gran Sasso Science InstituteL’AquilaItaly
  4. 4.Department of Economic StudiesUniversity of Chieti-PescaraPescaraItaly

Personalised recommendations