Inverse Game Theory: Learning Utilities in Succinct Games
Abstract
One of the central questions in game theory deals with predicting the behavior of an agent. Here, we study the inverse of this problem: given the agents’ equilibrium behavior, what are possible utilities that motivate this behavior? We consider this problem in arbitrary normal-form games in which the utilities can be represented by a small number of parameters, such as in graphical, congestion, and network design games. In all such settings, we show how to efficiently, i.e. in polynomial time, determine utilities consistent with a given correlated equilibrium. However, inferring both utilities and structural elements (e.g., the graph within a graphical game) is in general NP-hard. From a theoretical perspective our results show that rationalizing an equilibrium is computationally easier than computing it; from a practical perspective a practitioner can use our algorithms to validate behavioral models.
References
- 1.Kalyanaraman, S., Umans, C.: The complexity of rationalizing matchings. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 171–182. Springer, Heidelberg (2008) CrossRefGoogle Scholar
- 2.Kalyanaraman, S., Umans, C.: The complexity of rationalizing network formation. In: 50th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2009, pp. 485–494, October 2009Google Scholar
- 3.Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing a Nash equilibrium. In: Proceedings of the Thirty-Eighth Annual ACM Symposium on Theory of Computing, STOC 2006, pp. 71–78. ACM, New York (2006)Google Scholar
- 4.Chen, X., Deng, X., Teng, S.-H.: Settling the complexity of computing two-player Nash equilibria. J. ACM (JACM) 56(3), 14 (2009)MathSciNetCrossRefMATHGoogle Scholar
- 5.Papadimitriou, C.H., Roughgarden, T.: Computing correlated equilibria in multi-player games. J. ACM 55(3), 14:1–14:29 (2008)MathSciNetCrossRefMATHGoogle Scholar
- 6.Foster, D.P., Vohra, R.V.: Calibrated learning and correlated equilibrium. Games Econ. Behav. 21(12), 40–55 (1997)MathSciNetCrossRefMATHGoogle Scholar
- 7.Hart, S., Mas-Colell, A.: A simple adaptive procedure leading to correlated equilibrium. Econometrica 68(5), 1127–1150 (2000)MathSciNetCrossRefMATHGoogle Scholar
- 8.Samuelson, P.A.: Consumption theory in terms of revealed preference. Economica 15(60), 243–253 (1948)CrossRefGoogle Scholar
- 9.Afriat, S.N.: The construction of utility functions from expenditure data. Int. Econ. Rev. 8(1), 67–77 (1967)CrossRefMATHGoogle Scholar
- 10.Varian, H.R.: The nonparametric approach to demand analysis. Econometrica 50(4), 945–973 (1982)MathSciNetCrossRefMATHGoogle Scholar
- 11.Varian, H.R.: Revealed preference. In: Samuelsonian Economics and the Twenty-First Century (2006)Google Scholar
- 12.Nekipelov, D., Syrgkanis, V., Tardos, E.: Econometrics for learning agents. In: Proceedings of the Sixteenth ACM Conference on Economics and Computation, EC 2015, pp. 1–18. ACM, New York (2015)Google Scholar
- 13.Bresnahan, T.F., Reiss, P.C.: Empirical models of discrete games. J. Econometrics 48(1), 57–81 (1991)MathSciNetCrossRefMATHGoogle Scholar
- 14.Lise, W.: Estimating a game theoretic model. Comput. Econ. 18(2), 141–157 (2001)CrossRefMATHGoogle Scholar
- 15.Bajari, P., Hong, H., Ryan, S.P.: Identification and estimation of a discrete game of complete information. Econometrica 78(5), 1529–1568 (2010)MathSciNetCrossRefMATHGoogle Scholar
- 16.Ng, A.Y., Russell, S.: Algorithms for inverse reinforcement learning. In: Proceedings of the 17th International Conference on Machine Learning, pp. 663–670. Morgan Kaufmann (2000)Google Scholar
- 17.Abbeel, P., Ng, A.Y.: Apprenticeship learning via inverse reinforcement learning. In: Proceedings of the Twenty-first International Conference on Machine Learning, ICML 2004, pp. 1–8. ACM, New York (2004)Google Scholar
- 18.Waugh, K., Ziebart, B.D., Andrew Bagnell, J.: Computational rationalization. The inverse equilibrium problem (2013)Google Scholar
- 19.Ziebart, B.D., Maas, A., Andrew Bagnell, J., Dey, A.K.: Navigate like a cabbie: probabilistic reasoning from observed context-aware behavior. In: Proceedings of the Ubicomp, pp. 322–331 (2008)Google Scholar
- 20.Ahuja, R.K., Orlin, J.B.: Inverse optimization. Oper. Res. 49(5), 771–783 (2001)MathSciNetCrossRefMATHGoogle Scholar
- 21.Kearns, M., Littman, M.L., Singh, S.: Graphical models for game theory. In: Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence, UAI 2001, pp. 253–260. Morgan Kaufmann Publishers Inc, San Francisco (2001)Google Scholar
- 22.Howson Jr., J.T.: Equilibria of polymatrix games. Manage. Sci. 18(5), 312–318 (1972)Google Scholar
- 23.Rosenthal, R.W.: A class of games possessing pure-strategy Nash equilibria. Int. J. Game Theory 2(1), 65–67 (1973)MathSciNetCrossRefMATHGoogle Scholar
- 24.Chun, B.-G., Chaudhuri, K., Wee, H., Barreno, M., Papadimitriou, C.H., Kubiatowicz, J.: Selfish caching in distributed systems: a game-theoretic analysis. In: Proceedings of the 23rd Annual ACM Symposium on PODC, PODC 2004, pp. 21–30. ACM, New York (2004)Google Scholar
- 25.Anshelevich, E., Dasgupta, A., Kleinberg, J., Tardos, É., Wexler, T., Roughgarden, T.: The price of stability for network design with fair cost allocation. SIAM J. Comput. 38(4), 1602–1623 (2008)MathSciNetCrossRefMATHGoogle Scholar
- 26.Fotakis, D.A., Kontogiannis, S.C., Koutsoupias, E., Mavronicolas, M., Spirakis, P.G.: The structure and complexity of nash equilibria for a selfish routing game. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 123–134. Springer, Heidelberg (2002) CrossRefGoogle Scholar
Copyright information
Open Access This chapter is distributed under the terms of the Creative Commons Attribution Noncommercial License, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.