The Curse of Sequentiality in Routing Games

  • José Correa
  • Jasper de Jong
  • Bart de Keijzer
  • Marc Uetz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9470)

Abstract

In the “The curse of simultaneity”, Paes Leme et al. show that there are interesting classes of games for which sequential decision making and corresponding subgame perfect equilibria avoid worst case Nash equilibria, resulting in substantial improvements for the price of anarchy. This is called the sequential price of anarchy. A handful of papers have lately analysed it for various problems, yet one of the most interesting open problems was to pin down its value for linear atomic routing (also: network congestion) games, where the price of anarchy equals 5/2. The main contribution of this paper is the surprising result that the sequential price of anarchy is unbounded even for linear symmetric routing games, thereby showing that sequentiality can be arbitrarily worse than simultaneity for this class of games. Complementing this result we solve an open problem in the area by establishing that the (regular) price of anarchy for linear symmetric routing games equals 5/2. Additionally, we prove that in these games, even with two players, computing the outcome of a subgame perfect equilibrium is \(\mathsf {NP}\)-hard.

Notes

Acknowledgments

We thank Mathieu Faure for stimulating discussions and particularly for pointing out a precursor of the instance depicted in Fig. 2. We thank Marco Scarsini and Victor Verdugo for discussions on the price of anarchy of the symmetric atomic network game. We thank the reviewers for some helpful comments. We also thank Éva Tardos for allowing us to (partially) recycle their paper title from [14].

References

  1. 1.
    Angelucci, A., Bilò, V., Flammini, M., Moscardelli, L.: On the sequential price of anarchy of isolation games. In: Du, D.-Z., Zhang, G. (eds.) COCOON 2013. LNCS, vol. 7936, pp. 17–28. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  2. 2.
    Anshelevich, E., Dasgupta, A., Kleinberg, J., Tardos, É., Wexler, T., Roughgarden, T.: The price of stability for network design with fair cost allocation. In: Proceedings of the 45th FOCS, pp. 295–304. IEEE (2004)Google Scholar
  3. 3.
    Awerbuch, B., Azar, Y., Epstein, A.: The price of routing unsplittable flow. In: Proceedings of the 37th STOC, pp. 57–66 (2005)Google Scholar
  4. 4.
    Bhawalkar, K., Gairing, M., Roughgarden, T.: Weighted congestion games: the price of anarchy, universal worst-case examples, and tightness. ACM Trans. Economics Comput. 2(4), Article 14 (2014)Google Scholar
  5. 5.
    Bilo, V., Flammini, M., Monaco, G., Moscardelli, L.: Some anomalies of farsighted strategic behavior. In: Proceedings of the 10th WAOA, pp. 229–241 (2013)Google Scholar
  6. 6.
    Christodoulou, G., Koutsoupias, E.: The price of anarchy of finite congestion games. In: Proceedings of the 37th STOC, pp. 67–73 (2005)Google Scholar
  7. 7.
    Corréa, J., de Keijzer, B., de Jong, J., Uetz, M.: The curse of sequentiality in routing games. Technical Report CTIT, University of Twente (2015). http://eprints.eemcs.utwente.nl/26301/
  8. 8.
    de Jong, J., Uetz, M., Wombacher, A.: Decentralized throughput scheduling. In: Spirakis, P.G., Serna, M. (eds.) CIAC 2013. LNCS, vol. 7878, pp. 134–145. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  9. 9.
    de Jong, J., Uetz, M.: The sequential price of anarchy for atomic congestion games. In: Liu, T.-Y., Qi, Q., Ye, Y. (eds.) WINE 2014. LNCS, vol. 8877, pp. 429–434. Springer, Heidelberg (2014) Google Scholar
  10. 10.
    Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999) CrossRefGoogle Scholar
  11. 11.
    Kreps, D.M., Wilson, R.B.: Sequential equilibria. Econometrica 50, 863–894 (1982)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Kuhn, H.W.: Extensive games and the problem of information. Ann. Math. Stud. 28, 193–216 (1953)MathSciNetMATHGoogle Scholar
  13. 13.
    Milchtaich, I.: Crowding games are sequentially solvable. Int. J. Game Theory 27, 501–509 (1998)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Leme, R.P., Syrgkanis, V., Tardos, É.: The curse of simultaneity. In: Proceedings of the 3rd ITCS, pp. 60–67 (2012)Google Scholar
  15. 15.
    Osborne, M.J.: An Introduction to Game Theory. Oxford University Press, Oxford (2003) Google Scholar
  16. 16.
    Selten, R.: Spieltheoretische Behandlung eines Oligopolmodells mit Nachfrageträgheit: Teil 1: Bestimmung des Dynamischen Preisgleichgewichts. Zeitschrift für die gesamte Staatswissenschaft 121(2), 301–324 (1965)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Open Access This chapter is distributed under the terms of the Creative Commons Attribution Noncommercial License, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • José Correa
    • 1
  • Jasper de Jong
    • 2
  • Bart de Keijzer
    • 3
  • Marc Uetz
    • 2
  1. 1.Universidad de ChileSantiagoChile
  2. 2.University of TwenteEnschedeThe Netherlands
  3. 3.Sapienza University of RomeRomeItaly

Personalised recommendations