Streaming Verification in Data Analysis

  • Samira Daruki
  • Justin Thaler
  • Suresh Venkatasubramanian
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9472)


Streaming interactive proofs (SIPs) are a framework to reason about outsourced computation, where a data owner (the verifier) outsources a computation to the cloud (the prover), but wishes to verify the correctness of the solution provided by the cloud service. In this paper we present streaming interactive proofs for problems in data analysis. We present protocols for clustering and shape fitting problems, as well as an improved protocol for rectangular matrix multiplication. The latter can in turn be used to verify keigenvectors of a (streamed) \(n \times n\) matrix.

In general our solutions use polylogarithmic rounds of communication and polylogarithmic total communication and verifier space. For special cases (when optimality certificates can be verified easily), we present constant round protocols with similar costs. For rectangular matrix multiplication and eigenvector verification, our protocols work in the more restricted annotated data streaming model, and use sublinear (but not polylogarithmic) communication.


Input Stream Input Point Interactive Proof Streaming Algorithm Soundness Error 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Agarwal, P.K., Sharathkumar, R.: Streaming algorithms for extent problems in high dimensions. In: Proceedings of the Twenty-First Annual ACM-SIAM symposium on Discrete Algorithms (SODA), pp. 1481–1489. Society for Industrial and Applied Mathematics (2010)Google Scholar
  2. 2.
    Andoni, A., et al.: Eigenvalues of a matrix in the streaming model. In: Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1729–1737. SIAM (2013)Google Scholar
  3. 3.
    Babai, L., Frankl, P., Simon, J.: Complexity classes in communication complexity theory. In: 27th Annual Symposium on Foundations of Computer Science (FOCS), pp. 337–347. IEEE (1986)Google Scholar
  4. 4.
    Chakrabarti, A., Cormode, G., Goyal, N., Thaler, J.: Annotations for sparse data streams. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 687–706. SIAM (2014)Google Scholar
  5. 5.
    Chakrabarti, A., Cormode, G., McGregor, A.: Annotations in Data Streams. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 222–234. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  6. 6.
    Chakrabarti, A., Cormode, G., McGregor, A., Thaler, J.: Annotations in data streams. ACM Trans. Algorithms (TALG) 11(1), 7 (2014)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Chakrabarti, A., Cormode, G., McGregor, A., Thaler, J., Venkatasubramanian, S.: On interactivity in Arthur-Merlin communication and stream computation. In: Electronic Colloquium on Computational Complexity (ECCC), vol. 20, p. 180 (2013)Google Scholar
  8. 8.
    Chan, T.M.: Faster core-set constructions and data-stream algorithms in fixed dimensions. Comput. Geom. 35(1), 20–35 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Cormode, G., Mitzenmacher, M., Thaler, J.: Practical verified computation with streaming interactive proofs. In: Proceedings of the 3rd Innovations in Theoretical Computer Science Conference (ITCS), pp. 90–112. ACM (2012)Google Scholar
  10. 10.
    Cormode, G., Mitzenmacher, M., Thaler, J.: Streaming graph computations with a helpful advisor. Algorithmica 65(2), 409–442 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Cormode, G., Thaler, J., Yi, K.: Verifying computations with streaming interactive proofs. Proc. VLDB Endowment 5(1), 25–36 (2011)CrossRefGoogle Scholar
  12. 12.
    Edwards, M., Varadarajan, K.R.: No coreset, no cry: II. In: Sarukkai, S., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 107–115. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  13. 13.
    Goel, A., Indyk, P., Varadarajan, K.R.: Reductions among high dimensional proximity problems. In: Proceedings of the Twelfth Annual ACM-SIAM symposium on Discrete Algorithms (SODA), vol. 1, pp. 769–778. Citeseer (2001)Google Scholar
  14. 14.
    Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive proofs for muggles. In: Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing (STOC), pp. 113–122. ACM (2008)Google Scholar
  15. 15.
    Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoret. Comput. Sci. 38, 293–306 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Gur, T., Raz, R.: Arthur-Merlin streaming complexity. Inf. Comput. 243, 145–165 (2015). 40th International Colloquium on Automata, Languages and Programming (ICALP 2013)Google Scholar
  17. 17.
    Har-Peled, S.: No, coreset, no cry. In: Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 324–335. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  18. 18.
    Klauck, H.: On Arthur-Merlin games in communication complexity. In: 26th Annual Conference on Computational Complexity (CCC), pp. 189–199. IEEE (2011)Google Scholar
  19. 19.
    Klauck, H., Prakash, V.: An improved interactive streaming algorithm for the distinct elements problem. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572, pp. 919–930. Springer, Heidelberg (2014) Google Scholar
  20. 20.
    Lund, C., Fortnow, L., Karloff, H.J., Nisan, N.: Algebraic methods for interactive proof systems. J. ACM 39(4), 859–868 (1992)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Samira Daruki
    • 1
  • Justin Thaler
    • 2
  • Suresh Venkatasubramanian
    • 1
  1. 1.School of ComputingUniversity of UtahSalt Lake CityUSA
  2. 2.Yahoo LabsNew YorkUSA

Personalised recommendations