Advertisement

Give Me Another One!

  • Mike Behrisch
  • Miki Hermann
  • Stefan Mengel
  • Gernot Salzer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9472)

Abstract

We investigate the complexity of an optimization problem in Boolean propositional logic related to information theory: Given a conjunctive formula over a set of relations, find a satisfying assignment with minimal Hamming distance to a given assignment that satisfies the formula (\(\mathsf {NearestOtherSolution}\), \(\mathsf {NOSol}\)).

We present a complete classification with respect to the relations admitted in the formula. We give polynomial-time algorithms for several classes of constraint languages. For all other cases we prove hardness or completeness regarding \(\mathrm {poly{\text {-}}APX}\), \(\mathrm {NPO}\), or equivalence to a well-known hard optimization problem.

References

  1. 1.
    Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Protasi, M.: Complexity and Approximation: Combinatorial Optimization Problems and Their Approximability Properties. Springer-Verlag, Heidelberg (1999)CrossRefzbMATHGoogle Scholar
  2. 2.
    Baker, K.A., Pixley, A.F.: Polynomial interpolation and the Chinese Remainder Theorem for algebraic systems. Math. Z. 143(2), 165–174 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Behrisch, M., Hermann, M., Mengel, S., Salzer, G.: Minimal distance of propositional models (2015). CoRR abs/1502.06761
  4. 4.
    Böhler, E., Creignou, N., Reith, S., Vollmer, H.: Playing with Boolean blocks, Part II: Constraint satisfaction problems. SIGACT News 35(1), 22–35 (2004)CrossRefGoogle Scholar
  5. 5.
    Böhler, E., Reith, S., Schnoor, H., Vollmer, H.: Bases for Boolean co-clones. Inf. Process. Lett. 96(2), 59–66 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Creignou, N., Khanna, S., Sudan, M.: Complexity classifications of Boolean constraint satisfaction problems. In: SIAM Monographs on Discrete Mathematics and Applications, vol. 7. SIAM, Philadelphia (PA) (2001)Google Scholar
  7. 7.
    Creignou, N., Kolaitis, P.G., Zanuttini, B.: Structure identification of Boolean relations and plain bases for co-clones. J. Comput. Syst. Sci. 74(7), 1103–1115 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Dumer, I., Micciancio, D., Sudan, M.: Hardness of approximating the minimum distance of a linear code. IEEE Trans. Inf. Theory 49(1), 22–37 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Jeavons, P., Cohen, D., Gyssens, M.: Closure properties of constraints. J. Assoc. Comput. Mach. 44(4), 527–548 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Juban, L.: Dichotomy theorem for the generalized unique satisfiability problem. In: Ciobanu, G., Păun, G. (eds.) FCT 1999. LNCS, vol. 1684, pp. 327–337. Springer, Heidelberg (1999) CrossRefGoogle Scholar
  11. 11.
    Khanna, S., Sudan, M., Trevisan, L., Williamson, D.P.: The approximability of constraint satisfaction problems. SIAM J. Comput. 30(6), 1863–1920 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Lagerkvist, V.: Weak bases of boolean co-clones. Inf. Process. Lette. 114(9), 462–468 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings 10th Symposium on Theory of Computing (STOC 1978), San Diego (California, USA), pp. 216–226 (1978)Google Scholar
  14. 14.
    Schnoor, H., Schnoor, I.: Partial polymorphisms and constraint satisfaction problems. In: Creignou, N., Kolaitis, P.G., Vollmer, H. (eds.) Complexity of Constraints. LNCS, vol. 5250, pp. 229–254. Springer, Heidelberg (2008) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Mike Behrisch
    • 1
  • Miki Hermann
    • 2
  • Stefan Mengel
    • 2
  • Gernot Salzer
    • 1
  1. 1.Technische Universität WienViennaAustria
  2. 2.LIX (UMR CNRS 7161)École PolytechniquePalaiseauFrance

Personalised recommendations