ISAAC 2015: Algorithms and Computation pp 212-222

# Unbounded Discrepancy of Deterministic Random Walks on Grids

• Tobias Friedrich
• Maximilian Katzmann
• Anton Krohmer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9472)

## Abstract

Random walks are frequently used in randomized algorithms. We study a derandomized variant of a random walk on graphs, called rotor-router model. In this model, instead of distributing tokens randomly, each vertex serves its neighbors in a fixed deterministic order. For most setups, both processes behave remarkably similar: Starting with the same initial configuration, the number of tokens in the rotor-router model deviates only slightly from the expected number of tokens on the corresponding vertex in the random walk model. The maximal difference over all vertices and all times is called single vertex discrepancy. Cooper and Spencer (2006) showed that on $$\mathbb {Z}^{d}$$ the single vertex discrepancy is only a constant $$c_d$$. Other authors also determined the precise value of $$c_d$$ for $$d=1,2$$. All these results, however, assume that initially all tokens are only placed on one partition of the bipartite graph $$\mathbb {Z}^{d}$$. We show that this assumption is crucial by proving that otherwise the single vertex discrepancy can become arbitrarily large. For all dimensions $$d\ge 1$$ and arbitrary discrepancies $$\ell \ge 0$$, we construct configurations that reach a discrepancy of at least $$\ell$$.

## References

1. 1.
Aleliunas, R., Karp, R.M., Lipton, R.J., Lovasz, L., Rackoff, C.: Random walks, universal traversal sequences, and the complexity of maze problems. In: 20th FOCS, pp. 218–223 (1979)Google Scholar
2. 2.
Bampas, E., Gąsieniec, L., Hanusse, N., Ilcinkas, D., Klasing, R., Kosowski, A.: Euler tour lock-in problem in the rotor-router model. In: Keidar, I. (ed.) DISC 2009. LNCS, vol. 5805, pp. 423–435. Springer, Heidelberg (2009)
3. 3.
Barve, R.D., Grove, E.F., Vitter, J.S.: Simple randomized mergesort on parallel disks. Parallel Comput. 23, 601–631 (1997). Also in 8th SPAA, pp. 109–118 (1996)
4. 4.
Cooper, J., Doerr, B., Spencer, J., Tardos, G.: Deterministic random walks on the integers. Eur. J. Combin. 28, 2072–2090 (2007). Also in 3rd ANALCO, pp. 185–197 (2006)
5. 5.
Cooper, J., Doerr, B., Friedrich, T., Spencer, J.: Deterministic random walks on regular trees. Random Struct. Algorithms 37, 353–366 (2010). Also in 19th SODA, pp. 766–772 (2008)
6. 6.
Cooper, J.N., Spencer, J.: Simulating a random walk with constant error. Combin. Probab. Comput. 15, 815–822 (2006)
7. 7.
Dereniowski, D., Kosowski, A., Pajak, D., Uznanski, P.: Bounds on the cover time of parallel rotor walks. In: 31st STACS, pp. 263–275 (2014)Google Scholar
8. 8.
Doerr, B., Friedrich, T.: Deterministic random walks on the two-dimensional grid. Combin. Probab. Comput. 18, 123–144 (2009). Also in 17th ISAAC, pp. 474–483 (2006)
9. 9.
Doerr, B., Friedrich, T., Sauerwald, T.: Quasirandom rumor spreading. ACM Trans. Algorithms 11, 9:1–9:35 (2014). Also in 19th SODA, pp. 773–781 (2008)
10. 10.
Dumitriu, I., Tetali, P., Winkler, P.: On playing golf with two balls. SIAM J. Discrete Math. 16, 604–615 (2003)
11. 11.
Dyer, M., Frieze, A., Kannan, R.: A random polynomial-time algorithm for approximating the volume of convex bodies. J. ACM 38, 1–17 (1991). Also in 21st STOC, pp. 375–381 (1989)
12. 12.
Friedrich, T., Sauerwald, T.: The cover time of deterministic random walks. In: Thai, M.T., Sahni, S. (eds.) COCOON 2010. LNCS, vol. 6196, pp. 130–139. Springer, Heidelberg (2010)
13. 13.
Friedrich, T., Gairing, M., Sauerwald, T.: Quasirandom load balancing. SIAM J. Comput. 41, 747–771 (2012). Also in 21st SODA, pp. 1620–1629 (2010)
14. 14.
Kijima, S., Koga, K., Makino, K.: Deterministic random walks on finite graphs. In: 9th ANALCO, pp. 16–25 (2012)Google Scholar
15. 15.
Klasing, R., Kosowski, A., Pajak, D., Sauerwald, T.: The multi-agent rotor-router on the ring: a deterministic alternative to parallel random walks. In: 32nd PODC, pp. 365–374 (2013)Google Scholar
16. 16.
Kleber, M.: Goldbug variations. The Math. Intell. 27, 55–63 (2005)
17. 17.
Kosowski, A., Pająk, D.: Does adding more agents make a difference? a case study of cover time for the rotor-router. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014, Part II. LNCS, vol. 8573, pp. 544–555. Springer, Heidelberg (2014) Google Scholar
18. 18.
Lawler, G., Limic, V.: Random Walk: A Modern Introduction. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2010)
19. 19.
Nipkow, T., Paulson, L.C., Wenzel, M. (eds.): Isabelle/HOL: A Proof Assistant for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)Google Scholar
20. 20.
Priezzhev, V.B., Dhar, D., Dhar, A., Krishnamurthy, S.: Eulerian walkers as a model of self-organized criticality. Phys. Rev. Lett. 77, 5079–5082 (1996)
21. 21.
Robbins, H.: A remark on Stirling’s formula. The Am. Math. Mon. 62, 26–29 (1955)
22. 22.
Wagner, I.A., Lindenbaum, M., Bruckstein, A.M.: Distributed covering by ant-robots using evaporating traces. IEEE Trans. Rob. Autom. 15, 918–933 (1999)
23. 23.
Yanovski, V., Wagner, I.A., Bruckstein, A.M.: A distributed ant algorithm for efficiently patrolling a network. Algorithmica 37, 165–186 (2003)

© Springer-Verlag Berlin Heidelberg 2015

## Authors and Affiliations

• Tobias Friedrich
• 1
Email author
• Maximilian Katzmann
• 2
• Anton Krohmer
• 1
• 2
1. 1.Hasso Plattner InstitutePotsdamGermany
2. 2.Friedrich-Schiller-Universität JenaJenaGermany