Advertisement

Minimizing the Maximum Moving Cost of Interval Coverage

  • Haitao Wang
  • Xiao Zhang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9472)

Abstract

In this paper, we study an interval coverage problem. We are given n intervals of the same length on a line L and a line segment B on L. Each interval has a nonnegative weight. The goal is to move the intervals along L such that every point of B is covered by at least one interval and the maximum moving cost of all intervals is minimized, where the moving cost of each interval is its moving distance times its weight. Algorithms for the “unweighted” version of this problem have been given before. In this paper, we present a first-known algorithm for this weighted version and our algorithm runs in \(O(n^2\log n\log \log n)\) time. The problem has applications in mobile sensor barrier coverage.

References

  1. 1.
    Andrews, A.M., Wang, H.: Minimizing the aggregate movements for interval coverage. In: Dehne, F., Sack, J.-R., Stege, U. (eds.) WADS 2015. LNCS, vol. 9214, pp. 28–39. Springer, Heidelberg (2015) CrossRefGoogle Scholar
  2. 2.
    Bar-Noy, A., Baumer, B.: Average case network lifetime on an interval with adjustable sensing ranges. Algorithmica 72, 148–166 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bar-Noy, A., Rawitz, D., Terlecky, P.: Maximizing barrier coverage lifetime with mobile sensors. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 97–108. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  4. 4.
    de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry – Algorithms and Applications, 3rd edn. Springer-Verlag, Berlin (2008)zbMATHGoogle Scholar
  5. 5.
    Chen, D., Gu, Y., Li, J., Wang, H.: Algorithms on minimizing the maximum sensor movement for barrier coverage of a linear domain. Discrete Comput. Geom. 50, 374–408 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cole, R., Salowe, J., Steiger, W., Szemerédi, E.: An optimal-time algorithm for slope selection. SIAM J. Comput. 18(4), 792–810 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press, Cambridge (2009)zbMATHGoogle Scholar
  8. 8.
    Czyzowicz, J., Kranakis, E., Krizanc, D., Lambadaris, I., Narayanan, L., Opatrny, J., Stacho, L., Urrutia, J., Yazdani, M.: On minimizing the maximum sensor movement for barrier coverage of a line segment. In: Ruiz, P.M., Garcia-Luna-Aceves, J.J. (eds.) ADHOC-NOW 2009. LNCS, vol. 5793, pp. 194–212. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  9. 9.
    Czyzowicz, J., Kranakis, E., Krizanc, D., Lambadaris, I., Narayanan, L., Opatrny, J., Stacho, L., Urrutia, J., Yazdani, M.: On minimizing the sum of sensor movements for barrier coverage of a line segment. In: Nikolaidis, I., Wu, K. (eds.) ADHOC-NOW 2010. LNCS, vol. 6288, pp. 29–42. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  10. 10.
    Fan, H., Li, M., Sun, X., Wan, P., Zhao, Y.: Barrier coverage by sensors with adjustable ranges. ACM Trans. Sens. Netw. 11, 14 (2014)CrossRefGoogle Scholar
  11. 11.
    Megiddo, N.: Applying parallel computation algorithms in the design of serial algorithms. J. ACM 30(4), 852–865 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Mehrandish, M.: On routing, backbone formation and barrier coverage in wireless Ad Hoc and sensor networks. Ph.D. thesis, Concordia University, Montreal, Quebec, Canada (2011)Google Scholar
  13. 13.
    Mehrandish, M., Narayanan, L., Opatrny, J.: Minimizing the number of sensors moved on line barriers. In: Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), pp. 653–658 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Computer ScienceUtah State UniversityLoganUSA
  2. 2.Department of Computer ScienceCity University of Hong KongKowloon TongHong Kong

Personalised recommendations