Advertisement

Mikrowellengestützte Systeme zur Zustandserkennung von Abgaskatalysatoren und Abgasfiltern im Überblick

  • Ralf Moos

Kurzfassung

Die Regelung von Abgasnachbehandlungssystemen erfordert die Kenntnis der Katalysatorzustände. Dies kann z.B. die Sauerstoffbeladung von Dreiwegekatalysatoren, die Ammoniak-Beladung von SCR-Katalysatoren oder die Rußbeladung von Partikelfiltern sein. Derzeit werden Katalysatorzustände nur indirekt und/oder mit Hilfe von Modellen bestimmt. Das mikrowellengestützte Verfahren bestimmt den Katalysatorzustand hingegen direkt. Über kleine Koppelelemente (Antennen) werden elektromagnetische Wellen in den Abgasstrang eingekoppelt und die Reflexion oder die Transmission gemessen. Die elektrischen Signale korrelieren sehr gut mit dem Zustand des jeweiligen Abgasnachbehandlungssystems. Dieser Beitrag gibt einen Überblick über den Stand der Technik.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    Shelef, M., McCabe, R.W., “Twenty-five years after introduction of automotive catalysts: what next?”, Catalysis Today, Vol. 62, S. 35–50, 2000.CrossRefGoogle Scholar
  2. [2]
    Koebel, M., Elsener, M., Kröcher, O., Schär, C., Röthlisberger, R., Jaussi, F., Mangold, M., âNOx Reduction in the Exhaust of Mobile Heavy-Duty Diesel Engines by Urea-SCR†, Topics in Catalysis, Vol. 43, S. 43–48, 2004.CrossRefGoogle Scholar
  3. [3]
    Johnson, T., “Vehicle Emissions Review - 2012”, Directions in Engine-Efficiency and Emissions Research (DEER) Conference, Dearborn, Michigan, Oct. 16-19, 2012. Letzter Zugriff am 29.11.2015 auf https://www1.eere.energy.gov/vehicle-sandfuels/pdfs/deer_2012/wednesday/presentations/deer12_johnson.pdf
  4. [4]
    Kröcher, O., Devadas, M., Elsener, M., Wokaun, A., Söger, N., Pfeifer, M., Mussmann, L., “Investigation of the selective catalytic reduction of NO by NH3 on Fe-ZSM5 monolith catalysts”, Applied Catalysis B: Environmental, Vol. 66, S. 208–216, 2006.CrossRefGoogle Scholar
  5. [5]
    Takeuchi, M., Matsumoto, S., “NOx storage-reduction catalysts for gasoline engines”, Topics in Catalysis, Vol. 28, S. 151–156, 2004.CrossRefGoogle Scholar
  6. [6]
    Twigg, M.V., Phillips, P.R., “Cleaning the air we breathe - Controlling diesel particulate emissions from passenger cars”, Platinum Metals Review, Vol. 53, S. 27–34, 2009.CrossRefGoogle Scholar
  7. [7]
    Twigg, M.V, “Progress and future challenges in controlling automotive exhaust gas emissions”, Applied Catalysis B: Environmental, Vol. 70, S. 2–15, 2007.CrossRefGoogle Scholar
  8. [8]
    Boaro, M., Trovarelli, A., Hwang, J.-H., Mason, T.O., “Electrical and oxygen sto- rage/release properties of nanocrystalline ceria-zirconia solid solutions”, Solid State Ionics, Vol. 147, S. 85–95, 2002.CrossRefGoogle Scholar
  9. [9]
    Möller, R., Votsmeier, M., Onder, C., Guzzella, L., Gieshoff, J., “Is oxygen storage in three-way catalysts an equilibrium controlled process?”, Applied Catalysis B: Environmental, Vol. 91, S. 30–38, 2009.CrossRefGoogle Scholar
  10. [10]
    Moos, R., “A Brief Overview on Automotive Exhaust Gas Sensors Based on Electroceramics”, International Journal of Applied Ceramic Technology, Vol. 2, S. 401–413, 2005.CrossRefGoogle Scholar
  11. [11]
    Alkemade, U.G., Schumann, B. “Engines and exhaust after treatment systems for future automotive applications”, Solid State Ionics, Vol. 177, S. 2291–2296, 2006.CrossRefGoogle Scholar
  12. [12]
    Reiß, S., Wedemann, M., Moos, R., Rösch, M., “Electrical in situ characterization of three-way catalyst coatings”, Topics in Catalysis, Vol. 52, S. 1898–1902, 2009.CrossRefGoogle Scholar
  13. [13]
    Moos, R., Zimmermann, C., Birkhofer, T., Knezevic, A., Plog, C., Busch, M.R., Ried T., “Sensor for Directly Determining the State of a NOx Storage Catalyst”, SAE Technical Paper 2008-01-0447, 2008, doi: 10.4271/2008-01-0447.Google Scholar
  14. [14]
    Feulner, M., Hagen, G., Piontkowski, A., Müller, A., Moos, R., “In-Operation Monitoring of the Soot Load of Diesel Particulate Filters - Initial Tests”, Topics in Catalysis, Vol. 56, S. 483–488, 2013.CrossRefGoogle Scholar
  15. [15]
    Moos, R., “Catalysts as Sensors - A Promising Novel Approach in Automotive Exhaust Gas Aftertreatment”, Sensors, Vol. 10, S. 6773–6787, 2010.CrossRefGoogle Scholar
  16. [16]
    Birkhofer, T., Hofmann, P., Knezevic, A., Moos, R., Plog, C., Schneider, R., “Verfahren zur Erkennung des Zustands eines Katalysators mittels Mikrowellen”, Deutsche Patentschrift DE 10358495 B 4, 2003.Google Scholar
  17. [17]
    Moos, R., Spörl, M., Hagen, G., Gollwitzer, A., Wedemann, M., Fischerauer, G., “TWC: Lambda Control and OBD without Lambda Probe - An Initial Approach”, SAE Technical Paper 2008-01-0916, 2008, doi: 10.4271/2008-01-0916.Google Scholar
  18. [18]
    Fischerauer, G., Spörl, M., Gollwitzer, A., Wedemann, M., Moos, R., “Catalyst State Observation via the Perturbation of a Microwave Cavity Resonator”, Frequenz, Vol. 62, S. 180–184, 2008.CrossRefGoogle Scholar
  19. [19]
    Reiß, S., Fischerauer, G., Moos, R., “Radio frequency-based determination of the oxygen loading of automotive three-way catalysts”, Sensor 2011, Nürnberg, doi: 10.5162/sensor11/d4.1.Google Scholar
  20. [20]
    Reiß, S., Wedemann, M., Spörl, M., Fischerauer, G., Moos, R., “Effects of H2O, CO2, CO, and flow rates on the RF-based monitoring of three-way catalysts”, Sensor Letters, Vol. 9, S. 316–320, 2011.CrossRefGoogle Scholar
  21. [21]
    Beulertz, G., Votsmeier, M., Herbst, F., Moos, R., “Replacing the lambda probe by radio frequency-based in-operando three-way catalyst oxygen loading detection”, The 14th International Meeting on Chemical Sensors, Nürnberg, 2012, doi: 10.5162/ IMCS2012/P2.2.7.Google Scholar
  22. [22]
    Schödel, S., Moos, R., Votsmeier, M., Fischerauer, G., “SI-Engine Control With Microwave-Assisted Direct Observation of Oxygen Storage Level in Three-Way Catalysts“, IEEE Transactions on Control Systems Technology, Vol. 22, S. 23462353, 2014.CrossRefGoogle Scholar
  23. [23]
    Reiß, S., Spörl, M., Fischerauer, G., Moos, R., “Realabgastauglichkeit einer HF-gestützten Automobilabgasdiagnose”, 9. Dresdner Sensor-Symposium, 7.-9.12. 2009, Dresden, S. 263-266, 2009.Google Scholar
  24. [24]
    Beulertz, G., Votsmeier, M., Moos, R., “Effect of propene, propane, and methane on conversion and oxidation state of three-way catalysts: A microwave cavity perturbation study”, Applied Catalysis B: Environmental, Vol. 165, S. 369–377, 2015.CrossRefGoogle Scholar
  25. [25]
    Beulertz, G., Votsmeier, M., Moos, R., “In operando Detection of Three-Way Catalyst Aging by a Microwave-Based Method: Initial Studies”, Applied Sciences. Vol. 5, S. 174–186, 2015.CrossRefGoogle Scholar
  26. [26]
    Dietrich, M., Jahn, C., Lanzerath, P., Moos, R., “Microwave-Based Oxidation State and Soot Loading Determination on Gasoline Particulate Filters with Three-Way Catalyst Coating for Homogenously Operated Gasoline Engines”, Sensors, Vol. 15, S. 21971–21988, 2015.CrossRefGoogle Scholar
  27. [27]
    Balland, J., Parmentier, M., Schmitt, J., “Control of a Combined SCR on Filter and Under-Floor SCR System for Low Emission Passenger Cars”, SAE International Journal of Engines Vol., 7, S. 1252–1261, 2014.CrossRefGoogle Scholar
  28. [28]
    Ciardelli, C., Nova, I., Tronconi, E., Chatterjee, D., Bandl-Konrad, B., Weibel, M., Krutzsch, B., “Reactivity of NO/NO2-NH3 SCR system for diesel exhaust aftertreatment: Identification of the reaction network as a function of temperature and NO2 feed content”, Applied Catalysis B: Environmental, Vol. 70, S. 80–90, 2007.CrossRefGoogle Scholar
  29. [29]
    Schuler, A., Votsmeier, M., Kiwic, P., Gieshoff, J., Hautpmann, W., Drochner, A., Vogel, H., “NH3-SCR on Fe zeolite catalysts - From model setup to NH3 dosing”, Chemical Engineering Journal, Vol. 154, S. 333–340, 2009.CrossRefGoogle Scholar
  30. [30]
    Herman, A., Wu, M., Cabush, D., Shost, M., “Model Based Control of SCR Dosing and OBD Strategies with Feedback from NH3 Sensors”, SAE International Journal of Fuels and Lubricants, Vol. 2, S. 375–385, 2009.CrossRefGoogle Scholar
  31. [31]
    Simons, T., Simon, U., “Zeolites as nanoporous, gas-sensitive materials for in situ monitoring of DeNOx-SCR”, Beilstein Journal of Nanotechnology, Vol. 3, S. 667673, 2012.CrossRefGoogle Scholar
  32. [32]
    Simon, U., Franke, M.E., “Electrical properties of nanoscaled host/guest compounds”, Microporous Mesoporous Materials, Vol. 41, S. 1–36, 2000.CrossRefGoogle Scholar
  33. [33]
    Franke, M.E., Simon, U., “Solvate-supported proton transport in zeolites”, ChemPhysChem, Vol. 5, S. 465–472, 2004.CrossRefGoogle Scholar
  34. [34]
    Pihl, J., Daw, S., “NH3 storage isotherms: a path toward better models of NH3 storage on zeolite SCR catalysts”, 2014 DOE Crosscut Workshop on Lean Emissions Reduction Simulation, 29.4.-1.5.2014, Dearborn, MI, USA, 2014.Google Scholar
  35. [35]
    Rauch, D., Kubinski, D., Cavataio, G., Upadhyay, D., Moos, R., “Ammonia Loading Detection of Zeolite SCR Catalysts using a Radio Frequency based Method”, SAE International Journal of Engines, Vol. 8, S. 1126–1135, 2015.CrossRefGoogle Scholar
  36. [36]
    Rauch, D., Kubinski, D., Simon, U., Moos, R., “Detection of the ammonia loading of a Cu Chabazite SCR catalyst by a radio frequency-based method”, Sensors and Actuators B: Chemical, Vol. 205, S. 88–93, 2014.CrossRefGoogle Scholar
  37. [37]
    Deutschmann, O., Grunwaldt, J.-D., “Abgasnachbehandlung in mobilen Systemen: Stand der Technik, Herausforderungen und Perspektiven“, Chemie Ingenieur Technik”, Vol. 85, S. 595–617, 2013.CrossRefGoogle Scholar
  38. [38]
    Roy, S., Baiker, A., “NOx Storage-Reduction Catalysis: From Mechanism and Materials Properties to Storage-Reduction Performance”, Chemical Reviews, Vol. 109, S. 4054–4091, 2009.CrossRefGoogle Scholar
  39. [39]
    Groß, A., Bishop, S.R., Yang, D.J., Tuller, H.L., Moos, R., “The electrical properties of NOx-storing carbonates during NOx exposure”, Solid State Ionics, Vol. 225, S. 317–323, 2012.CrossRefGoogle Scholar
  40. [40]
    Birkhofer, T., Knezevic, A., Leye, H., Moos, R., Plog, C., Ried, T., Voigtländer, D., “Verfahren zur Zustandserkennung eines NOx-Speicherkatalysators”, Deutsche Patentschrift DE 10064499 B 4, 2000.Google Scholar
  41. [41]
    Fremerey, P., Reiß, S., Geupel, A., Fischerauer, G., Moos, R., “Determination of the NOx Loading of an Automotive Lean NOx Trap by Directly Monitoring the Electrical Properties of the Catalyst Material Itself’, Sensors, Vol. 11, S. 8261–8280, 2011.CrossRefGoogle Scholar
  42. [42]
    Casapu, M., Grunwaldt, J.-D., Maciejewski, M., Baiker, A., Eckhoff, S., Göbel, U., Wittrock, M., âThe fate of platinum in Pt/Ba/CeO2 and Pt/Ba/Al2O3 catalysts during thermal ageing†, Journal of Catalysis, Vol. 251, S. 28–38, 2007.CrossRefGoogle Scholar
  43. [43]
    Feulner, M., Hagen, G., Müller, A., Brüggemann, D., Moos, R., “In-Operation Monitoring of the Soot Load of Diesel Particulate Filters with a Microwave Method”, The 14th International Meeting on Chemical Sensors, Nürnberg, 2012, doi: 10.5162/ IMCS2012/P2.2.6.Google Scholar
  44. [44]
    Fischerauer, G., Förster, M., Moos, R., “Sensing the Soot Load in Automotive Diesel Particulate Filters by Microwave Methods”, Measurement Science and Technology, Vol. 21, S. 035108, 2012.CrossRefGoogle Scholar
  45. [45]
    Hansson, J., and Ingeström, V., “A Method for Estimating Soot Load in a DPF Using an RF-based Sensor”, Master Thesis, U of Linköping, Sweden, 2012, http://liu.diva-portal.org/smash/recordjsf?pid=diva2:535349, letzter Zugriff am 12.12.2015.
  46. [46]
    Sappok, A., Bromberg, L., “Development of Radio Frequency Sensing for In-Situ Diesel Particulate Filter State Monitoring and Aftertreatment System Control”, ASME Internal Combustion Engine Division’s 2013 Fall Technical Conference, ICEF2013-19199, 2013.Google Scholar
  47. [47]
    Sappok, A., Bromberg, L., Parks, J., Prikhodko, V., “Loading and Regeneration Analysis of a Diesel Particulate Filter with a Radio Frequency-Based Sensor”, SAE Technical Paper 2010-01-2126, 2010, doi: 10.4271/2010-01-2126.Google Scholar
  48. [48]
  49. [49]
    Knitt, A.A., DeCou, M.T., “Radio frequency particulate sensing system”, US Patentschrift US 7,253, 641, 2006.Google Scholar
  50. [50]
    Walton, F.B., “Method and system for detecting soot and ash concentrations in a filter”, US Patentschrift US 7,157, 919, 2005.Google Scholar
  51. [51]
    Gonze, E.V., Kirby, K.W., Phelps, A., Gregoire, D.J., ’’Apparatus and Method for Onboard Performance Monitoring of Exhaust Gas Particulate Filter”, US Patentschrift US 8,650, 857, 2009.Google Scholar
  52. [52]
    Sappok, A., Bromberg, L., “Radio Frequency Diesel Particulate Filter Soot and Ash Level Sensors: Enabling Adaptive Controls for Heavy-Duty Diesel Applications”, SAE International Journal of Commercial Vehicles, Vol. 7, S. 468–477, 2014.CrossRefGoogle Scholar
  53. [53]
    Nanjundaswamy, H., Nagaraju, V, Wu, Y., Koehler, E., Sappok, A., Ragaller, P., Bromberg, L., “Advanced RF Particulate Filter Sensing and Controls for Efficient Aftertreatment Management and Reduced Fuel Consumption”, SAE Technical Paper 2015-01-0996, 2015, doi: 10.4271/2015-01-0996.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Ralf Moos
    • 1
  1. 1.Bayreuth Engine Research Center (BERC), Lehrstuhl für FunktionsmaterialienUniversität BayreuthBayreuth

Personalised recommendations