Advertisement

Decidability, Introduction Rules and Automata

  • Gilles Dowek
  • Ying Jiang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9450)

Abstract

We present a method to prove the decidability of provability in several well-known inference systems. This method generalizes both cut-elimination and the construction of an automaton recognizing the provable propositions.

Notes

Acknowledgements

This work is supported by the ANR-NSFC project LOCALI (NSFC 61161130530 and ANR 11 IS02 002 01) and the Chinese National Basic Research Program (973) Grant No. 2014CB340302.

References

  1. 1.
    Basin, D., Ganzinger, H.: Automated complexity analysis based on ordered resolution. J. ACM 48(1), 70–109 (2001)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata: application to model-checking. In: Mazurkiewicz, A.W., Winkowski, J. (eds.) Concurrency Theory. LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  3. 3.
    Dowek, G., Jiang, Y.: Cut-elimination and the decidability of reachability in alternating pushdown systems (2014). arXiv:1410.8470 [cs.LO]
  4. 4.
    Dyckhoff, R.: Contraction-free sequent calculi for intuitionistic logic. J. Symb. Log. 57(3), 795–807 (1992)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Dyckhoff, R., Lengrand, S.: LJQ: a strongly focused calculus for intuitionistic logic. In: Beckmann, A., Berger, U., Löwe, B., Tucker, J.V. (eds.) CiE 2006. LNCS, vol. 3988, pp. 173–185. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  6. 6.
    Dyckhoff, R., Negri, S.: Admissibility of structural rules for contraction-free systems of intuitionistic logic. J. Symb. Log. 65, 1499–1518 (2000)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Girard, J.-Y.: Locus solum. Math. Struct. Comput. Sci. 11, 301–506 (2001)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Girard, J.-Y., Lafont, Y., Taylor, P.: Proofs and Types. Cambridge University Press, Cambridge (1989)zbMATHGoogle Scholar
  9. 9.
    Frühwirth, T., Shapiro, E., Vardi, M., Yardeni, E.: Logic programs as types for logic programs. In: Logic in Computer Science, pp. 300–309 (1991)Google Scholar
  10. 10.
    Goubault-Larrecq, J.: Deciding H\(_1\) by resolution. Inf. Process. Lett. 95(3), 401–408 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Hudelmaier, J.: An \(O(n \log n)\)-space decision procedure for intuitionistic propositional logic. J. Log. Comput. 3, 63–76 (1993)zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Kleene, S.C.: Introduction to Metamathematics. North-Holland, Amsterdam (1952)zbMATHGoogle Scholar
  13. 13.
    McAllester, D.A.: Automatic recognition of tractability in inference relations. J. ACM 40(2), 284–303 (1993)zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Prawitz, D.: Natural Deduction. Almqvist & Wiksell, Stockholm (1965)zbMATHGoogle Scholar
  15. 15.
    Vorob’ev, N.N.: A new algorithm for derivability in the constructive propositional calculus. Am. Math. Soc. Transl. 2(94), 37–71 (1970)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.InriaParis Cedex 13France
  2. 2.State Key Laboratory of Computer Science, Institute of SoftwareChinese Academy of SciencesBeijingChina

Personalised recommendations