Enhancing Search-Based QBF Solving by Dynamic Blocked Clause Elimination

  • Florian LonsingEmail author
  • Fahiem Bacchus
  • Armin Biere
  • Uwe Egly
  • Martina Seidl
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9450)


Among preprocessing techniques for quantified Boolean formula (QBF) solving, quantified blocked clause elimination (QBCE) has been found to be extremely effective. We investigate the power of dynamically applying QBCE in search-based QBF solving with clause and cube learning (QCDCL). This dynamic application of QBCE is in sharp contrast to its typical use as a mere preprocessing technique. In our dynamic approach, QBCE is applied eagerly to the formula interpreted under the assignments that have been enumerated in QCDCL. The tight integration of QBCE in QCDCL results in a variant of cube learning which is exponentially stronger than the traditional method. We implemented our approach in the QBF solver DepQBF and ran experiments on instances from the QBF Gallery 2014. On application benchmarks, QCDCL with dynamic QBCE substantially outperforms traditional QCDCL. Moreover, our approach is compatible with incremental solving and can be combined with preprocessing techniques other than QBCE.


Satisfying Assignment Work Inprocessing Unit Clause Rule Init Quantify Boolean Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ansótegui, C., Gomes, C.P., Selman, B.: The achilles’ heel of QBF. In: AAAI/IAAI, pp. 275–281. AAAI Press/The MIT Press (2005)Google Scholar
  2. 2.
    Benedetti, M., Mangassarian, H.: QBF-based formal verification: experience and perspectives. JSAT 5(1–4), 133–191 (2008)MathSciNetGoogle Scholar
  3. 3.
    Bubeck, U., Kleine Büning, H.: Bounded universal expansion for preprocessing QBF. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 244–257. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  4. 4.
    Davis, M., Logemann, G., Loveland, D.W.: A machine program for theorem-proving. Commun. ACM 5(7), 394–397 (1962)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Egly, U., Seidl, M., Woltran, S.: A solver for QBFs in negation normal form. Constraints 14(1), 38–79 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Gent, I.P., Giunchiglia, E., Narizzano, M., Rowley, A.G.D., Tacchella, A.: Watched data structures for QBF solvers. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 25–36. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  7. 7.
    Giunchiglia, E., Marin, P., Narizzano, M.: sQueezeBF: an effective preprocessor for QBFs based on equivalence reasoning. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 85–98. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  8. 8.
    Giunchiglia, E., Narizzano, M., Tacchella, A.: Clause/term resolution and learning in the evaluation of quantified boolean formulas. JAIR 26, 371–416 (2006)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Goultiaeva, A., Bacchus, F.: Exploiting circuit representations in QBF solving. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 333–339. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  10. 10.
    Goultiaeva, A., Seidl, M., Biere, A.: Bridging the gap between dual propagation and CNF-based QBF solving. In: Järvisalo, M., Van Gelder, A. (ed.) DATE, pp. 811–814. ACM (2013)Google Scholar
  11. 11.
    Heule, M., Järvisalo, M., Lonsing, F., Seidl, M., Biere, A.: Clause elimination for SAT and QSAT. JAIR 53, 127–168 (2015)Google Scholar
  12. 12.
    Janota, M., Grigore, R., Marques-Silva, J.: On QBF proofs and preprocessing. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR-19 2013. LNCS, vol. 8312, pp. 473–489. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  13. 13.
    Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 355–370. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  14. 14.
    Kleine Büning, H., Karpinski, M., Flögel, A.: Resolution for quantified boolean formulas. Inf. Comput. 117(1), 12–18 (1995)zbMATHCrossRefGoogle Scholar
  15. 15.
    Klieber, W., Sapra, S., Gao, S., Clarke, E.: A non-prenex, non-clausal QBF solver with game-state learning. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 128–142. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  16. 16.
    Letz, R.: Lemma and model caching in decision procedures for quantified boolean formulas. In: Egly, U., Fermüller, C. (eds.) TABLEAUX 2002. LNCS (LNAI), vol. 2381, pp. 160–175. Springer, Heidelberg (2002) CrossRefGoogle Scholar
  17. 17.
    Pulina, L., Tacchella, A.: A structural approach to reasoning with quantified boolean formulas. In: IJCAI, pp. 596–602 (2009)Google Scholar
  18. 18.
    Ramesh, A., Becker, G., Murray, N.V.: CNF and DNF considered harmful for computing prime implicants/implicates. JAIR 18(3), 337–356 (1997)zbMATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Samer, M., Szeider, S.: Backdoor sets of quantified boolean formulas. JAR 42(1), 77–97 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Samulowitz, H., Bacchus, F.: Dynamically partitioning for solving QBF. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 215–229. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  21. 21.
    Samulowitz, H., Davies, J., Bacchus, F.: Preprocessing QBF. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 514–529. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  22. 22.
    Schaefer, T.J.: On the complexity of some two-person perfect-information games. J. Comput. Syst. Sci. 16(2), 185–225 (1978)zbMATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Silva, J.P.M., Sakallah, K.A.: GRASP: a search algorithm for propositional satisfiability. IEEE Trans. Comput. 48(5), 506–521 (1999)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Van Gelder, A.: Contributions to the theory of practical quantified boolean formula solving. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 647–663. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  25. 25.
    Van Gelder, A.: Primal and dual encoding from applications into quantified boolean formulas. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 694–707. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  26. 26.
    Van Gelder, A., Wood, S.B., Lonsing, F.: Extended failed-literal preprocessing for quantified boolean formulas. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 86–99. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  27. 27.
    Zhang, L.: Solving QBF by combining conjunctive and disjunctive normal forms. In: Dustdar, S., Schall, D., Skopik, F., Juszczyk, L., Psaier, H. (eds.) AAAI/IAAI, pp. 143–150. AAAI Press (2006)Google Scholar
  28. 28.
    Zhang, L., Malik, S.: Conflict driven learning in a quantified boolean satisfiability solver. In: ICCAD, pp. 442–449. ACM/IEEE Computer Society (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Florian Lonsing
    • 1
    Email author
  • Fahiem Bacchus
    • 2
  • Armin Biere
    • 3
  • Uwe Egly
    • 1
  • Martina Seidl
    • 3
  1. 1.Knowledge-Based Systems GroupVienna University of TechnologyViennaAustria
  2. 2.Department of Computer ScienceUniversity of TorontoTorontoCanada
  3. 3.Institute for Formal Models and VerificationJKU LinzLinzAustria

Personalised recommendations